Protein–peptide interactions play a crucial role in various cellular processes and are implicated in abnormal cellular behaviors leading to diseases such as cancer. Therefore, understanding these interactions is vital for both functional genomics and drug discovery efforts. Despite a significant increase in the availability of protein–peptide complexes, experimental methods for studying these interactions remain laborious, time-consuming, and expensive. Computational methods offer a complementary approach but often fall short in terms of prediction accuracy. To address these challenges, we introduce PepCNN, a deep learning-based prediction model that incorporates structural and sequence-based information from primary protein sequences. By utilizing a combination of half-sphere exposure, position specific scoring matrices from multiple-sequence alignment tool, and embedding from a pre-trained protein language model, PepCNN outperforms state-of-the-art methods in terms of specificity, precision, and AUC. The PepCNN software and datasets are publicly available at
This content will become publicly available on August 20, 2025
Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available at
- PAR ID:
- 10535313
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 8
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0308661
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract https://github.com/abelavit/PepCNN.git . -
Abstract Galaxies are biased tracers of the underlying cosmic web, which is dominated by dark matter (DM) components that cannot be directly observed. Galaxy formation simulations can be used to study the relationship between DM density fields and galaxy distributions. However, this relationship can be sensitive to assumptions in cosmology and astrophysical processes embedded in galaxy formation models, which remain uncertain in many aspects. In this work, we develop a diffusion generative model to reconstruct DM fields from galaxies. The diffusion model is trained on the CAMELS simulation suite that contains thousands of state-of-the-art galaxy formation simulations with varying cosmological parameters and subgrid astrophysics. We demonstrate that the diffusion model can predict the unbiased posterior distribution of the underlying DM fields from the given stellar density fields while being able to marginalize over uncertainties in cosmological and astrophysical models. Interestingly, the model generalizes to simulation volumes ≈500 times larger than those it was trained on and across different galaxy formation models. The code for reproducing these results can be found at
https://github.com/victoriaono/variational-diffusion-cdm ✎ . -
Abstract We present a critical analysis of physics-informed neural operators (PINOs) to solve partial differential equations (PDEs) that are ubiquitous in the study and modeling of physics phenomena using carefully curated datasets. Further, we provide a benchmarking suite which can be used to evaluate PINOs in solving such problems. We first demonstrate that our methods reproduce the accuracy and performance of other neural operators published elsewhere in the literature to learn the 1D wave equation and the 1D Burgers equation. Thereafter, we apply our PINOs to learn new types of equations, including the 2D Burgers equation in the scalar, inviscid and vector types. Finally, we show that our approach is also applicable to learn the physics of the 2D linear and nonlinear shallow water equations, which involve three coupled PDEs. We release our artificial intelligence surrogates and scientific software to produce initial data and boundary conditions to study a broad range of physically motivated scenarios. We provide the
source code , an interactivewebsite to visualize the predictions of our PINOs, and a tutorial for their use at theData and Learning Hub for Science . -
Abstract The widespread misuse of antibiotics has escalated antibiotic resistance into a critical global public health concern. Beyond antibiotics, metals function as antibacterial agents. Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials and may also foster antibiotic resistance within bacterial communities through co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values and produces a high false negative rate. Other than the best hit approach, only a few antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, these tools lack comprehensive annotation for MRGs conferring resistance to multiple metals. To address such limitations, we introduce DeepMRG, a deep learning-based multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable of predicting multiple metal labels associated with an MRG. It leverages bit score-based similarity distribution of sequences with experimentally verified MRGs. To ensure unbiased model evaluation, we employed a clustering method to partition our dataset into six subsets, five for cross-validation and one for testing, with non-homologous sequences, mitigating the impact of sequence homology. DeepMRG consistently achieved high overall F1-scores and significantly reduced false negative rates across a wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or isolate assemblies. The web server of DeepMRG can be accessed at
https://deepmrg.cs.vt.edu/deepmrg and the source code is available athttps://github.com/muhit-emon/DeepMRG under the MIT license. -
Abstract In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes. Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able to perform classification with or without redshift, but we show that incorporating redshift information improves performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift), and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe (
r < 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time photometric transient classification problem. All of the data processing and model code developed for this paper can be found in the SCONE software package1 located at github.com/helenqu/scone (Qu 2021).github.com/helenqu/scone