skip to main content

Search for: All records

Creators/Authors contains: "Hsueh, J W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present an analysis of seven strongly gravitationally lensed quasars and the corresponding constraints on the properties of dark matter. Our results are derived by modelling the lensed image positions and flux-ratios using a combination of smooth macro models and a population of low-mass haloes within the mass range 106 to 109 M⊙. Our lens models explicitly include higher-order complexity in the form of stellar discs and luminous satellites, as well as low-mass haloes located along the observed lines of sight for the first time. Assuming a Cold Dark Matter (CDM) cosmology, we infer an average total mass fraction in substructure of $f_{\rm sub} = 0.012^{+0.007}_{-0.004}$ (68 per cent confidence limits), which is in agreement with the predictions from CDM hydrodynamical simulations to within 1σ. This result is closer to the predictions than those from previous studies that did not include line-of-sight haloes. Under the assumption of a thermal relic dark matter model, we derive a lower limit on the particle relic mass of mth > 5.58 keV (95 per cent confidence limits), which is consistent with a value of mth > 5.3 keV from the recent analysis of the Lyα forest. We also identify two main sources of possible systematic errors andmore »conclude that deeper investigations in the complex structure of lens galaxies as well as the size of the background sources should be a priority for this field.« less