skip to main content

Search for: All records

Creators/Authors contains: "Hu, Feng Sheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent decades of warmer climate have brought drying wetlands and falling lake levels to southern Alaska. These recent changes can be placed into a longer-term context of postglacial lake-level fluctuations that include low stands that were as much as 7 m lower than present at eight lakes on the Kenai Lowland. Closed-basin lakes on the Kenai Lowland are typically ringed with old shorelines, usually as wave-cut scarps, cut several meters above modern lake levels; the scarps formed during deglaciation at 25–19 ka in a kettle moraine topography on the western Kenai Lowland. These high-water stands were followed by millennia of low stands, when closed-basin lake levels were drawn down by 5–10 m or more. Peat cores from satellite fens near or adjoining the eight closed-basin lakes show that a regional lake level rise was underway by at least 13.4 ka. At Jigsaw Lake, a detailed study of 23 pairs of overlapping sediment cores, seismic profiling, macrofossil analysis, and 58 AMS radiocarbon dates reveal rapidly rising water levels at 9–8 ka that caused large slabs of peat to slough off and sink to the lake bottom. These slabs preserve an archive of vegetation that had accumulated on a lakeshore apron exposed during the preceding drawdown period. They also preserve evidence of a brief period of lake level rise at 4.7–4.5 ka. We examined plant succession using in situ peat sequences in nine satellite fens around Jigsaw Lake that indicated increased effective moisture between 4.6 and 2.5 ka synchronous with the lake level rise. Mid- to late-Holocene lake high stands in this area are recorded by numerous ice-shoved ramparts (ISRs) along the shores. ISRs at 15 lakes show that individual ramparts typically record several shove events, separated by hundreds or thousands of years. Most ISRs date to within the last 5200 years and it is likely that older ISRs were erased by rising lake levels during the mid- to late Holocene. This study illustrates how data on vegetation changes in hydrologically coupled satellite-fen peat records can be used to constrain the water level histories in larger adjacent lakes. We suggest that this method could be more widely utilized for paleo-lake level reconstruction. 
    more » « less
  2. More than four decades’ high-resolution (~1 meter (m)) remote sensing observation in upland and lowland tundra revealed divergent pathways of shrub-cover responses to fire disturbance and climate change during 1951 to 2016 in the Noatak National Preserve of northern Alaska. We set up 114 study sites (250 m by 250 m) in burned and the adjacent unburned upland and lowland tundra using stratified random sampling. Specifically, all sites were placed with a minimum distance of 500 m apart from one another, and the unburned sites were located in areas greater than 500 m and less than 2,000 m radius surrounding the fire perimeters. To achieve an unbiased representation of tundra types (upland and lowland tundra) and fire severity levels (high, moderate, low, and unburned), a minumun of 12 study sites were randomly assigned to each tundra type × fire severity group. We then analyzed decadal-scale shrub cover change in each study site using supervised support vector machine classifier (ArcGIS 10.5). The data was presented as shrub cover (m2 ha (hectare)-1) at years before fire and after fire, where negative values of Year Since Fire (YSF) correspond to the number of years before fire, and positive values are the number of years after fire. Our results revealed that shrub expansion in the well-drained uplands was largely enhanced by fire disturbance, and it showed positive correlation with fire severity. In contrast, shrub cover decreased in lowland tundra after fire, which triggered thermokarst-associated water impounding and resulted in ~ 50% loss of shrub cover over three decades. 
    more » « less
  3. Abstract

    Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high‐latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial–millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire‐regime variability, we synthesized 27 published sediment‐charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000–4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad‐scale environmental change, including climate warming and biome‐scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire‐regime change across our study areas during the Holocene. This finding implies broad‐scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st‐century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.

    more » « less
  4. Abstract

    The expansion of shrubs across the Arctic tundra may fundamentally modify land–atmosphere interactions. However, it remains unclear how shrub expansion pattern is linked with key environmental drivers, such as climate change and fire disturbance. Here we used 40+ years of high‐resolution (~1.0 m) aerial and satellite imagery to estimate shrub‐cover change in 114 study sites across four burned and unburned upland (ice‐poor) and lowland (ice‐rich) tundra ecosystems in northern Alaska. Validated with data from four additional upland and lowland tundra fires, our results reveal that summer precipitation was the most important climatic driver (r = 0.67,p < 0.001), responsible for 30.8% of shrub expansion in the upland tundra between 1971 and 2016. Shrub expansion in the uplands was largely enhanced by wildfire (p < 0.001) and it exhibited positive correlation with fire severity (r = 0.83,p < 0.001). Three decades after fire disturbance, the upland shrub cover increased by 1077.2 ± 83.6 m2 ha−1, ~7 times the amount identified in adjacent unburned upland tundra (155.1 ± 55.4 m2 ha−1). In contrast, shrub cover markedly decreased in lowland tundra after fire disturbance, which triggered thermokarst‐associated water impounding and resulted in 52.4% loss of shrub cover over three decades. No correlation was found between lowland shrub cover with fire severity (r = 0.01). Mean summer air temperature (MSAT) was the principal factor driving lowland shrub‐cover dynamics between 1951 and 2007. Warmer MSAT facilitated shrub expansion in unburned lowlands (r = 0.78,p < 0.001), but accelerated shrub‐cover losses in burned lowlands (r = −0.82,p < 0.001). These results highlight divergent pathways of shrub‐cover responses to fire disturbance and climate change, depending on near‐surface permafrost and drainage conditions. Our study offers new insights into the land–atmosphere interactions as climate warming and burning intensify in high latitudes.

    more » « less
  5. Abstract

    Larix laricina(eastern larch, tamarack) is a transcontinental North American conifer with a prominent disjunction in the Yukon isolating the Alaskan distribution from the rest of its range. We investigate whether in situ persistence during the last glacial maximum (LGM) or long‐distance postglacial migration from south of the ice sheets resulted in the modern‐day Alaskan distribution. We analyzed variation in three chloroplast DNA regions of 840 trees from a total of 69 populations (24 new sampling sites situated on both sides of the Yukon range disjunction pooled with 45 populations from a published source) and conducted ensemble species distribution modeling (SDM) throughout Canada and United States to hindcast the potential range ofL. laricinaduring the LGM. We uncovered the genetic signature of a long‐term isolation of larch populations in Alaska, identifying three endemic chlorotypes and low levels of genetic diversity. Range‐wide analysis across North America revealed the presence of a distinct Alaskan lineage. Postglacial gene flow across the Yukon divide was unidirectional, from Alaska toward previously glaciated Canadian regions, and with no evidence of immigration into Alaska. Hindcast SDM indicates one of the broadest areas of past climate suitability forL. laricinaexisted in central Alaska, suggesting possible in situ persistence of larch in Alaska during the LGM. Our results provide the first unambiguous evidence for the long‐term isolation ofL. laricinain Alaska that extends beyond the last glacial period and into the present interglacial period. The lack of gene flow into Alaska along with the overall probability of larch occurrence in Alaska being currently lower than during the LGM suggests that modern‐day Alaskan larch populations are isolated climate relicts of broader glacial distributions, and so are particularly vulnerable to current warming trends.

    more » « less
  6. Abstract Aim

    Ecological properties governed by threshold relationships can exhibit heightened sensitivity to climate, creating an inherent source of uncertainty when anticipating future change. We investigated the impact of threshold relationships on our ability to project ecological change outside the observational record (e.g., the 21st century), using the challenge of predicting late‐Holocene fire regimes in boreal forest and tundra ecosystems.


    Boreal forest and tundra ecosystems of Alaska.

    <bold>Time period</bold>

    850–2100 CE.

    <bold>Major taxa studied</bold>

    Not applicable.


    We informed a set of published statistical models, designed to predict the 30‐year probability of fire occurrence based on climatological normals, with downscaled global climate model data for 850–1850 CE. To evaluate model performance outside the observational record and the implications of threshold relationships, we compared modelled estimates with mean fire return intervals estimated from 29 published lake‐sediment palaeofire reconstructions. To place our results in the context of future change, we evaluate changes in the location of threshold to burning under 21st‐century climate projections.


    Model–palaeodata comparisons highlight spatially varying accuracy across boreal forest and tundra regions, with variability strongly related to the summer temperature threshold to burning: sites closer to this threshold exhibited larger prediction errors than sites further away from this threshold. Modifying the modern (i.e., 1950–2009) fire–climate relationship also resulted in significant changes in modelled estimates. Under 21st‐century climate projections, increasing proportions of Alaskan tundra and boreal forest will approach and surpass the temperature threshold to burning, with > 50% exceeding this threshold by > 2 °C by 2070–2099.

    <bold>Main conclusions</bold>

    Our results highlight a high sensitivity of statistical projections to changing threshold relationships and data uncertainty, implying that projections of future ecosystem change in threshold‐governed ecosystems will be accompanied by notable uncertainty. This work also suggests that ecological responses to climate change will exhibit high spatio‐temporal variability as different regions approach and surpass climatic thresholds over the 21st century.

    more » « less