Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
Flat electronic bands are expected to show proportionally enhanced electron correlations, which may generate a plethora of novel quantum phases and unusual low-energy excitations. They are increasingly being pursued in d-electron-based systems with crystalline lattices that feature destructive electronic interference, where they are often topological. Such flat bands, though, are generically located far away from the Fermi energy, which limits their capacity to partake in the low-energy physics. Here we show that electron correlations produce emergent flat bands that are pinned to the Fermi energy. We demonstrate this effect within a Hubbard model, in the regime described by Wannier orbitals where an effective Kondo description arises through orbital-selective Mott correlations. Moreover, the correlation effect cooperates with symmetry constraints to produce a topological Kondo semimetal. Our results motivate a novel design principle for Weyl Kondo semimetals in a new setting, viz. d-electron-based materials on suitable crystal lattices, and uncover interconnections among seemingly disparate systems that may inspire fresh understandings and realizations of correlated topological effects in quantum materials and beyond.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Lattice symmetries are central to the characterization of electronic topology. Recently, it was shown that Green's function eigenvectors form a representation of the space group. This formulation has allowed the identification of gapless topological states even when quasiparticles are absent. Here we demonstrate the profundity of the framework in the extreme case, when interactions lead to a Mott insulator, through a solvable model with long-range interactions. We find that both Mott poles and zeros are subject to the symmetry constraints, and relate the symmetry-enforced spectral crossings to degeneracies of the original noninteracting eigenstates. Our results lead to new understandings of topological quantum materials and highlight the utility of interacting Green's functions toward their symmetry-based design. Published by the American Physical Society2024more » « less
-
Flat bands that do not merely arise from weak interactions can produce exotic physical properties, such as superconductivity or correlated many-body effects. The quantum metric can differentiate whether flat bands will result in correlated physics or are merely dangling bonds. A potential avenue for achieving correlated flat bands involves leveraging geometrical constraints within specific lattice structures, such as the kagome lattice; however, materials are often more complex. In these cases, quantum geometry becomes a powerful indicator of the nature of bands with small dispersions. We present a simple, soft-chemical processing route to access a flat band with an extended quantum metric below the Fermi level. By oxidizing Ni-kagome material Cs2Ni3S4to CsNi3S4, we see a two orders of magnitude drop in the room temperature resistance. However, CsNi3S4is still insulating, with no evidence of a phase transition. Using experimental data, density functional theory calculations, and symmetry analysis, our results suggest the emergence of a correlated insulating state of unknown origin.more » « less
-
null (Ed.)Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7 lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7 and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.more » « less
-
Abstract Magnetic fluctuations induced by geometric frustration of local Ir-spins disturb the formation of long-range magnetic order in the family of pyrochlore iridates. As a consequence, Pr2Ir2O7lies at a tuning-free antiferromagnetic-to-paramagnetic quantum critical point and exhibits an array of complex phenomena including the Kondo effect, biquadratic band structure, and metallic spin liquid. Using spectroscopic imaging with the scanning tunneling microscope, complemented with machine learning, density functional theory and theoretical modeling, we probe the local electronic states in Pr2Ir2O7and find an electronic phase separation. Nanoscale regions with a well-defined Kondo resonance are interweaved with a non-magnetic metallic phase with Kondo-destruction. These spatial nanoscale patterns display a fractal geometry with power-law behavior extended over two decades, consistent with being in proximity to a critical point. Our discovery reveals a nanoscale tuning route, viz. using a spatial variation of the electronic potential as a means of adjusting the balance between Kondo entanglement and geometric frustration.more » « less
An official website of the United States government
