skip to main content

Search for: All records

Creators/Authors contains: "Hu, Juejun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As silicon photonics transitions from research to commercial deployment, packaging solutions that efficiently couple light into highly compact and functional sub-micrometer silicon waveguides are imperative but remain challenging. The 220 nm silicon-on-insulator (SOI) platform, poised to enable large-scale integration, is the most widely adopted by foundries, resulting in established fabrication processes and extensive photonic component libraries. The development of a highly efficient, scalable, and broadband coupling scheme for this platform is therefore of paramount importance. Leveraging two-photon polymerization (TPP) and a deterministic free-form micro-optics design methodology based on the Fermat’s principle, this work demonstrates an ultra-efficient and broadband 3-D coupler interface between standard SMF-28 single-mode fibers and silicon waveguides on the 220 nm SOI platform. The coupler achieves a low coupling loss of 0.8 dB for the fundamental TE mode, along with 1 dB bandwidth exceeding 180 nm. The broadband operation enables diverse bandwidth-driven applications ranging from communications to spectroscopy. Furthermore, the 3-D free-form coupler also enables large tolerance to fiber misalignments and manufacturing variability, thereby relaxing packaging requirements toward cost reduction capitalizing on standard electronic packaging process flows.

    more » « less
  2. Bragg gratings offer high-performance filtering and routing of light on-chip through a periodic modulation of a waveguide’s effective refractive index. Here, we model and experimentally demonstrate the use of Sb2Se3, a nonvolatile and transparent phase-change material, to tune the resonance conditions in two devices which leverage periodic Bragg gratings—a stopband filter and Fabry-Perot cavity. Through simulations, we show that similar refractive indices between silicon and amorphous Sb2Se3can be used to induce broadband transparency, while the crystalline state can enhance the index contrast in these Bragg devices. Our experimental results show the promise and limitations of this design approach and highlight specific fabrication challenges which need to be addressed in future implementations.

    more » « less
  3. García-Blanco, Sonia M. ; Cheben, Pavel (Ed.)
  4. Optical phase-change materials have enabled nonvolatile programmability in integrated photonic circuits by leveraging a reversible phase transition between amorphous and crystalline states. To control these materials in a scalable manner on-chip, heating the waveguide itself via electrical currents is an attractive option which has been recently explored using various approaches. Here, we compare the heating efficiency, fabrication variability, and endurance of two promising heater designs which can be easily integrated into silicon waveguides—a resistive microheater using n-doped silicon and one using a silicon p-type/intrinsic/n-type (PIN) junction. Raman thermometry is used to characterize the heating efficiencies of these microheaters, showing that both devices can achieve similar peak temperatures but revealing damage in the PIN devices. Subsequent endurance testing and characterization of both device types provide further insights into the reliability and potential damage mechanisms that can arise in electrically programmable phase-change photonic devices.

    more » « less
  5. The objective of this Opinion is to stimulate new research into materials that can meet the needs of tomorrow’s programmable photonics components. Herein, we argue that the inherent property portfolios of the common telluride phase change materials, which have been successfully applied in data storage technologies, are unsuitable for most emerging programmable photonics applications. We believe that newer PCMs with wider bandgaps, such as Sb2S3, Sb2Se3, and Ge2Sb2Se4Te (GSST), can be optimized to meet the demands of holographic displays, optical neural network memories, and beam steering devices.

    more » « less
  6. Free, publicly-accessible full text available October 1, 2024
  7. Abstract

    The development of compact and fieldable mid-infrared (mid-IR) spectroscopy devices represents a critical challenge for distributed sensing with applications from gas leak detection to environmental monitoring. Recent work has focused on mid-IR photonic integrated circuit (PIC) sensing platforms and waveguide-integrated mid-IR light sources and detectors based on semiconductors such as PbTe, black phosphorus and tellurene. However, material bandgaps and reliance on SiO2substrates limit operation to wavelengthsλ ≲ 4 μm. Here we overcome these challenges with a chalcogenide glass-on-CaF2PIC architecture incorporating split-gate photothermoelectric graphene photodetectors. Our design extends operation toλ = 5.2 μm with a Johnson noise-limited noise-equivalent power of 1.1 nW/Hz1/2, no fall-off in photoresponse up tof = 1 MHz, and a predicted 3-dB bandwidth off3dB > 1 GHz. This mid-IR PIC platform readily extends to longer wavelengths and opens the door to applications from distributed gas sensing and portable dual comb spectroscopy to weather-resilient free space optical communications.

    more » « less