skip to main content


Search for: All records

Creators/Authors contains: "Hu, Yibo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in natural language processing (NLP) and Big Data technologies have been crucial for scientists to analyze political unrest and violence, prevent harm, and promote global conflict management. Government agencies and public security organizations have invested heavily in deep learning-based applications to study global conflicts and political violence. However, such applications involving text classification, information extraction, and other NLP-related tasks require extensive human efforts in annotating/labeling texts. While limited labeled data may drastically hurt the models’ performance (over-fitting), large demands on annotation tasks may turn real-world applications impracticable. To address this problem, we propose Confli-T5, a prompt-based method that leverages the domain knowledge from existing political science ontology to generate synthetic but realistic labeled text samples in the conflict and mediation domain. Our model allows generating textual data from the ground up and employs our novel Double Random Sampling mechanism to improve the quality (coherency and consistency) of the generated samples. We conduct experiments over six standard datasets relevant to political science studies to show the superiority of Confli-T5. Our codes are publicly available 
    more » « less
  2. Political and social scientists monitor, analyze and predict political unrest and violence, preventing (or mitigating) harm, and promoting the management of global conflict. They do so using event coder systems, which extract structured representations from news articles to design forecast models and event-driven continuous monitoring systems. Existing methods rely on expensive manual annotated dictionaries and do not support multilingual settings. To advance the global conflict management, we propose a novel model, Multi-CoPED (Multilingual Multi-Task Learning BERT for Coding Political Event Data), by exploiting multi-task learning and state-of-the-art language models for coding multilingual political events. This eliminates the need for expensive dictionaries by leveraging BERT models' contextual knowledge through transfer learning. The multilingual experiments demonstrate the superiority of Multi-CoPED over existing event coders, improving the absolute macro-averaged F1-scores by 23.3% and 30.7% for coding events in English and Spanish corpus, respectively. We believe that such expressive performance improvements can help to reduce harms to people at risk of violence. 
    more » « less
  3. Analyzing conflicts and political violence around the world is a persistent challenge in the political science and policy communities due in large part to the vast volumes of specialized text needed to monitor conflict and violence on a global scale. To help advance research in political science, we introduce ConfliBERT, a domain-specific pre-trained language model for conflict and political violence. We first gather a large domain-specific text corpus for language modeling from various sources. We then build ConfliBERT using two approaches: pre-training from scratch and continual pre-training. To evaluate ConfliBERT, we collect 12 datasets and implement 18 tasks to assess the models’ practical application in conflict research. Finally, we evaluate several versions of ConfliBERT in multiple experiments. Results consistently show that ConfliBERT outperforms BERT when analyzing political violence and conflict. 
    more » « less
  4. Knowledge discovery and extraction approaches attract special attention across industries and areas moving toward the 5V Era. In the political and social sciences, scholars and governments dedicate considerable resources to develop intelligent systems for monitoring, analyzing and predicting conflicts and affairs involving political entities across the globe. Such systems rely on background knowledge from external knowledge bases, that conflict experts commonly maintain manually. The high costs and extensive human efforts associated with updating and extending these repositories often compromise their correctness of. Here we introduce CoMe-KE (Conflict and Mediation Knowledge Extractor) to extend automatically knowledge bases about conflict and mediation events. We explore state-of-the-art natural language models to discover new political entities, their roles and status from news. We propose a distant supervised method and propose an innovative zero-shot approach based on a dynamic hypothesis procedure. Our methods leverage pre-trained models through transfer learning techniques to obtain excellent results with no need for a labeled data. Finally, we demonstrate the superiority of our method through a comprehensive set of experiments involving two study cases in the social sciences domain. CoMe-KE significantly outperforms the existing baseline, with (on average) double of the performance retrieving new political entities. 
    more » « less
  5. null (Ed.)
    Traditional deep neural networks (NNs) have significantly contributed to the state-of-the-art performance in the task of classification under various application domains. However, NNs have not considered inherent uncertainty in data associated with the class probabilities where misclassification under uncertainty may easily introduce high risk in decision making in real-world contexts (e.g., misclassification of objects in roads leads to serious accidents). Unlike Bayesian NN that indirectly infer uncertainty through weight uncertainties, evidential NNs (ENNs) have been recently proposed to explicitly model the uncertainty of class probabilities and use them for classification tasks. An ENN offers the formulation of the predictions of NNs as subjective opinions and learns the function by collecting an amount of evidence that can form the subjective opinions by a deterministic NN from data. However, the ENN is trained as a black box without explicitly considering inherent uncertainty in data with their different root causes, such as vacuity (i.e., uncertainty due to a lack of evidence) or dissonance (i.e., uncertainty due to conflicting evidence). By considering the multidimensional uncertainty, we proposed a novel uncertainty-aware evidential NN called WGAN-ENN (WENN) for solving an out-of-distribution (OOD) detection problem. We took a hybrid approach that combines Wasserstein Generative Adversarial Network (WGAN) with ENNs to jointly train a model with prior knowledge of a certain class, which has high vacuity for OOD samples. Via extensive empirical experiments based on both synthetic and real-world datasets, we demonstrated that the estimation of uncertainty by WENN can significantly help distinguish OOD samples from boundary samples. WENN outperformed in OOD detection when compared with other competitive counterparts 
    more » « less