skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Yong-Jie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Refractory complex concentrated alloys (RCCAs) show potential as the next-generation structural materials due to their superior strength in extreme environments. However, RCCAs processed by metal additive manufacturing (AM) typically suffer from process-related challenges surrounding laser material interaction defects and microstructure control. Multimodalin situtechniques (synchrotron X-ray imaging and diffraction and infrared imaging) and melt pool-level simulations were employed to understand rapid solidification pathways in two representative RCCAs: (i) multi-phase BCC + HCP Ti0.4Zr0.4Nb0.1Ta0.1and (ii) single-phase BCC Ti0.486V0.375Cr0.111Ta0.028. As expected, laser material interaction defects followed similar systematic trends in process parameter space for both alloys. Additionally, both alloys formed a single-phase (BCC) microstructure after rapid solidification processing. However, significant differences in microstructure selection between these alloys were discovered, where Ti0.4Zr0.4Nb0.1Ta0.1showed a mixture of equiaxed and columnar grains, while Ti0.486V0.375Cr0.111Ta0.028was dominated by columnar growth. These behaviors were well described by the influence of undercooling effects on columnar-to-equiaxed transition (CET). Distinct microstructure formation in each alloy was verified through CET predictions via analytical melt pool simulations, which showed a ~ 5 × increase degrees in undercooling for Ti0.4Zr0.4Nb0.1Ta0.1compared to Ti0.486V0.375Cr0.111Ta0.028. Overall, these results show that microstructure control based on modulating the freezing range must be balanced with process considerations which resist defect formation, such as solidification crack formation in RCCAs. Graphical abstract 
    more » « less
  2. Despite the critical role of sintering phenomena in constraining the long-term durability of nano-sized particles, a clear understanding of nanoparticle sintering has remained elusive due to the challenges in atomically tracking the neck initiation and discerning different mechanisms. Through the integration of in-situ transmission electron microscopy and atomistic modeling, this study uncovers the atomic dynamics governing the neck initiation of Pt-Fe nanoparticles via a surface self-diffusion process, allowing for coalescence without significant particle movement. Real-time imaging reveals that thermally activated surface morphology changes in individual nanoparticles induce significant surface self-diffusion. The kinetic entrapment of self-diffusing atoms in the gaps between closely spaced nanoparticles leads to the nucleation and growth of atomic layers for neck formation. This surface self-diffusion-driven sintering process is activated at a relatively lower temperature compared to the classic Ostwald ripening and particle migration and coalescence processes. The fundamental insights have practical implications for manipulating the morphology, size distribution, and stability of nanostructures by leveraging surface self-diffusion processes. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available September 1, 2025
  4. One-dimensional lepidocrocite, 1DL, titania, TiO2, is a recently discovered form of this ubiquitous oxide that is of interest in a variety of applications ranging from photocatalysis to water purification, among others. The fundamental building blocks of these materials are snippets (30 nm long) of individual 1DLs that self-assemble into nanobundle, NB, structures. These NBs can then be driven to self-assemble into quasi-two-dimensional, 2D, sheets, films, or free-flowing mesoscopic particles. Here, we use analytical atomic-resolution scanning transmission electron microscopy (STEM) and first-principles density functional theory (DFT) calculations to demonstrate that the arrangement of the neighboring NFs can be altered through ion exchange with Li, Na, and tetramethylammonium hydroxide (TMA) cations. Moreover, using cryogenic electron energy-loss spectroscopy (EELS), we show that the introduction of different ion species results in a change in the local occupancy of the TiO2 t2g and eg orbitals. Both experimental findings are predicted by ground-state energy simulations of two-dimensional lepidocrocite TiO2. 
    more » « less
  5. In this work, we performed in situ nanoindentation in TEM to capture the real-time 〈c + a〉 dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of 〈c + a〉 dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both 〈c + a〉 dislocation retraction and detwinning. Moreover, we note that the plastic zone comprised of 〈c + a〉 dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that, in addition to 〈a〉 dislocations, the I1 stacking fault bounded with a 〈1/2c+p〉 Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant 〈c + a〉 dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of 〈c + a〉 dislocation slip and twinning in Mg and alloys. 
    more » « less
  6. Abstract Refractory multi-principal element alloys (RMPEAs) are promising materials for high-temperature structural applications. Here, we investigate the role of short-range ordering (SRO) on dislocation glide in the MoNbTi and TaNbTi RMPEAs using a multi-scale modeling approach. Monte carlo/molecular dynamics simulations with a moment tensor potential show that MoNbTi exhibits a much greater degree of SRO than TaNbTi and the local composition has a direct effect on the unstable stacking fault energies (USFEs). From mesoscale phase-field dislocation dynamics simulations, we find that increasing SRO leads to higher mean USFEs and stress required for dislocation glide. The gliding dislocations experience significant hardening due to pinning and depinning caused by random compositional fluctuations, with higher SRO decreasing the degree of USFE dispersion and hence, amount of hardening. Finally, we show how the morphology of an expanding dislocation loop is affected by the applied stress. 
    more » « less
  7. Abstract Severe lattice distortion is a prominent feature of high-entropy alloys (HEAs) considered a reason for many of those alloys’ properties. Nevertheless, accurate characterizations of lattice distortion are still scarce to only cover a tiny fraction of HEA’s giant composition space due to the expensive experimental or computational costs. Here we present a physics-informed statistical model to efficiently produce high-throughput lattice distortion predictions for refractory non-dilute/high-entropy alloys (RHEAs) in a 10-element composition space. The model offers improved accuracy over conventional methods for fast estimates of lattice distortion by making predictions based on physical properties of interatomic bonding rather than atomic size mismatch of pure elements. The modeling of lattice distortion also implements a predictive model for yield strengths of RHEAs validated by various sets of experimental data. Combining our previous model on intrinsic ductility, a data mining design framework is demonstrated for efficient exploration of strong and ductile single-phase RHEAs. 
    more » « less
  8. Abstract This work was inspired by new experimental findings where we discovered a two-dimensional (2D) material comprised of titanium-oxide-based one-dimensional (1D) sub-nanometer filaments. Preliminary results suggest that the 2D material contains considerable amounts of carbon, C, in addition to titanium, Ti, and oxygen, O. The aim of this study is to investigate the low-energy, stable atomic forms of 2D titanium carbo-oxides as a function of C content. Via a combination of first-principles calculations and an effective structure sampling scheme, the stable configurations of C-substitutions are comprehensively searched by templating different 2D TiO 2 polymorphs and considering a two O to one C replacement scheme. Among the searched stable configurations, a structure where the (101) planes of anatase bound the top and bottom surfaces with a chemical formula of Ti C 1 / 4 O 3 / 2 was of particularly low energy. Furthermore, the variations in the electronic band structure and chemical bonding environments caused by the high-content C substitution are investigated via additional calculations using a hybrid exchange-correlation functional. 
    more » « less