Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Magnetic fields and their dynamical interplay with matter in galaxy clusters contribute to the physical properties and evolution of the intracluster medium. However, the current understanding of the origin and properties of cluster magnetic fields is still limited by observational challenges. In this article, we map the magnetic fields at hundreds-kpc scales of five clusters RXC J1314.4-2515, Abell 2345, Abell 3376, MCXC J0352.4-7401, and El Gordo using the synchrotron intensity gradient technique in conjunction with high-resolution radio observations from the Jansky Very Large Array (JVLA) and the Karoo Array Telescope (MeerKAT). We demonstrate that the magnetic field orientation of radio relics derived from synchrotron intensity gradient is in agreement with that obtained with synchrotron polarization. Most importantly, the synchrotron intensity gradient is not limited by Faraday depolarization in the cluster central regions and allows us to map magnetic fields in the radio halos of RXC J1314.4-2515 and El Gordo. We find that magnetic fields in radio halos exhibit a preferential direction along the major merger axis and show turbulent structures at higher angular resolution. The results are consistent with expectations from numerical simulations, which predict turbulent magnetic fields in cluster mergers that are stirred and amplified by matter motions.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available August 8, 2025
-
Determining emergency department (ED) nurse staffing decisions to balance quality of service and staffing costs can be extremely challenging, especially when there is a high level of uncertainty in patient demand. Increasing data availability and continuing advancements in predictive analytics provide an opportunity to mitigate demand uncertainty by using demand forecasts. In this work, we study a two-stage prediction-driven staffing framework where the prediction models are integrated with the base (made weeks in advance) and surge (made nearly real-time) nurse staffing decisions in the ED. We quantify the benefit of having the ability to use the more expensive surge staffing and identify the importance of balancing demand uncertainty versus system stochasticity. We also propose a near-optimal two-stage staffing policy that is straightforward to interpret and implement. Last, we develop a unified framework that combines parameter estimation, real-time demand forecasts, and nurse staffing in the ED. High-fidelity simulation experiments for the ED demonstrate that the proposed framework has the potential to reduce annual staffing costs by 10%–16% ($2 M–$3 M) while guaranteeing timely access to care. This paper was accepted by David Simchi-Levi, healthcare management. Funding: J. Dong was partially supported by the Division of Civil, Mechanical and Manufacturing Innovation [Grant CMMI-1944209]. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2021.02781 .more » « lessFree, publicly-accessible full text available May 24, 2025
-
Abstract We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of quantum loop algebras of type $$B_{n}$$ and $$G_{2}$$, as well as their Lusztig and RTT (for type $$B_{n}$$ only) integral forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these $${\mathbb {Q}}(v)$$-algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above $${{\mathbb {Z}}}[v,v^{-1}]$$-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras of type $$B_{n}$$ and $$G_{2}$$ Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type $$A_{n}$$ results of [30].more » « less
-
ABSTRACT We investigate the driving of MHD turbulence by gravitational contraction using simulations of an initially spherical, isothermal, magnetically supercritical molecular cloud core with transonic and trans-Alfvénic turbulence. We perform a Helmholtz decomposition of the velocity field, and investigate the evolution of its solenoidal and compressible parts, as well as of the velocity component along the gravitational acceleration vector, a proxy for the infall component of the velocity field. We find that (1) In spite of being supercritical, the core first contracts to a sheet perpendicular to the mean magnetic field, and the sheet itself collapses. (2) The solenoidal component of the turbulence remains at roughly its initial level throughout the simulation, while the compressible component increases continuously, implying that turbulence does not dissipate towards the centre of the core. (3) The distribution of simulation cells in the B–ρ plane occupies a wide triangular region at low densities, bounded below by the expected trend for fast MHD waves (B ∝ ρ, applicable for high-local Alfvénic Mach number MA) and above by the trend expected for slow waves (B ∼ constant, applicable for low local MA). At high densities, the distribution follows a single trend $$B \propto \rho ^{\gamma _{\rm eff}}$$, with 1/2 < γeff < 2/3, as expected for gravitational compression. (4) The mass-to-magnetic flux ratio λ increases with radius r due to the different scalings of the mass and magnetic flux with r. At a fixed radius, λ increases with time due to the accretion of material along field lines. (5) The solenoidal energy fraction is much smaller than the total turbulent component, indicating that the collapse drives the turbulence mainly compressibly, even in directions orthogonal to that of the collapse.more » « less
-
ABSTRACT Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult. However, recent advances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observations. Leveraging these theoretical frameworks, we propose a novel Convolutional Neural Network (CNN) model to extract this embedded information, enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation (ϕ), the magnetic field’s inclination angle (γ) relative to the line-of-sight, and the total magnetization level (M$$_{\rm A}^{-1}$$) of the cloud. We train the model using synthetic emission lines of 13CO (J = 1–0) and C18O (J = 1–0), generated from 3D MHD simulations that span conditions from sub-Alfvénic to super-Alfvénic molecular clouds. Our tests confirm that the CNN model effectively reconstructs the 3D magnetic field topology and magnetization. The median uncertainties are under 5° for both ϕ and γ, and less than 0.2 for MA in sub-Alfvénic conditions (MA ≈ 0.5). In super-Alfvénic scenarios (MA ≈ 2.0), they are under 15° for ϕ and γ, and 1.5 for MA. We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the 3D magnetic field map for L1478, revealing a global inclination angle of ≈76° and a global MA of ≈1.07.more » « less
-
ABSTRACT The coupling state between ions and neutrals in the interstellar medium plays a key role in the dynamics of magnetohydrodynamic (MHD) turbulence, but is challenging to study numerically. In this work, we investigate the damping of MHD turbulence in a partially ionized medium using 3D two-fluid (ions + neutrals) simulations generated with the athenak code. Specifically, we examine the velocity, density, and magnetic field statistics of the two-fluid MHD turbulence in different regimes of neutral-ion coupling. Our results demonstrate that when ions and neutrals are strongly coupled, the velocity statistics resemble those of single-fluid MHD turbulence. Both the velocity structures and kinetic energy spectra of ions and neutrals are similar, while their density structures can be significantly different. With an excess of small-scale sharp density fluctuations in ions, the density spectrum in ions is shallower than that of neutrals. When ions and neutrals are weakly coupled, the turbulence in ions is more severely damped due to the ion-neutral collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum and density spectrum in ions compared to the Kolmogorov spectrum. We also find that the magnetic energy spectrum basically follows the shape of the kinetic energy spectrum of ions, irrespective of the coupling regime. In addition, we find large density fluctuations in ions and neutrals and thus spatially inhomogeneous ionization fractions. As a result, the neutral-ion decoupling and damping of MHD turbulence take place over a range of length-scales.more » « less