skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Chaosong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Using the latest coupled geospace model Multiscale Atmosphere‐Geospace Environment (MAGE) and observations from Jicamarca Incoherent scatter radar (ISR) and ICON ion velocity meter (IVM) instrument, we examine the pre‐reversal enhancement (PRE) during geomagnetic quiet time period. The MAGE shows comparable PRE to both the Jicamarca ISR and ICON observations. There appears to be a discrepancy between the Jicamarca ISR and ICON IVM with the later showed PRE about two times larger (∼40 m/s). This is the first time that MAGE is used to simulate the PRE. The results show that the MAGE can simulate the PRE well and are mostly consistent with observations. 
    more » « less
  2. We simulated the Nov 3-4, 2021 geomagnetic storm event penetrating electric field using the Multiscale Atmosphere-Geospace Environment (MAGE) model and compared with the NASA ICON observation. The ICON observation showed sudden enhancement of the vertical ion drift when the penetrating electric field arrived at the equatorial region. The MAGE model simulated vertical ion drifts have the similarly fast enhancement that shown in the ICON data at the same UT time and satellite location. Hence, ICON ion drift data was able to verify MAGE simulation, which couples the magnetospheric model was able to simulate the penetrating electric field very well. 
    more » « less
  3. Abstract Solar eruptions cause geomagnetic storms in the near‐Earth environment, creating spectacular aurorae visible to the human eye and invisible dynamic changes permeating all of geospace. Just equatorward of the aurora, radars and satellites often observe intense westward plasma flows called subauroral polarization streams (SAPS) in the dusk‐to‐midnight ionosphere. SAPS occur across a narrow latitudinal range and lead to intense frictional heating of the ionospheric plasma and atmospheric neutral gas. SAPS also generate small‐scale plasma waves and density irregularities that interfere with radio communications. As opposed to the commonly observed duskside SAPS, intense eastward subauroral plasma flows in the morning sector were recently discovered to have occurred during a super storm on 20 November 2003. However, the origin of these flows termed “dawnside SAPS” could not be explained by the same mechanism that causes SAPS on the duskside and has remained a mystery. Through real‐event global geospace simulations, here we demonstrate that dawnside SAPS can only occur during major storm conditions. During these times, the magnetospheric plasma convection is so strong as to effectively transport ions to the dawnside, whereas they are typically deflected to the dusk by the energy‐dependent drifts. Ring current pressure then builds up on the dawnside and drives field‐aligned currents that connect to the subauroral ionosphere, where eastward SAPS are generated. The origin of dawnside SAPS explicated in this study advances our understanding of how the geospace system responds to strongly disturbed solar wind driving conditions that can have severe detrimental impacts on human society and infrastructure. 
    more » « less