We simulated the Nov 3-4, 2021 geomagnetic storm event penetrating electric field using the Multiscale Atmosphere-Geospace Environment (MAGE) model and compared with the NASA ICON observation. The ICON observation showed sudden enhancement of the vertical ion drift when the penetrating electric field arrived at the equatorial region. The MAGE model simulated vertical ion drifts have the similarly fast enhancement that shown in the ICON data at the same UT time and satellite location. Hence, ICON ion drift data was able to verify MAGE simulation, which couples the magnetospheric model was able to simulate the penetrating electric field very well.
more »
« less
MAGE Model Simulation of the Pre‐Reversal Enhancement and Comparison With ICON and Jicamarca ISR Observations
Abstract Using the latest coupled geospace model Multiscale Atmosphere‐Geospace Environment (MAGE) and observations from Jicamarca Incoherent scatter radar (ISR) and ICON ion velocity meter (IVM) instrument, we examine the pre‐reversal enhancement (PRE) during geomagnetic quiet time period. The MAGE shows comparable PRE to both the Jicamarca ISR and ICON observations. There appears to be a discrepancy between the Jicamarca ISR and ICON IVM with the later showed PRE about two times larger (∼40 m/s). This is the first time that MAGE is used to simulate the PRE. The results show that the MAGE can simulate the PRE well and are mostly consistent with observations.
more »
« less
- Award ID(s):
- 2120511
- PAR ID:
- 10539426
- Publisher / Repository:
- JGR
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 6
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Penetrating and disturbed electric fields develop during geomagnetic storms and are effective in driving remarkable changes in the nightside low latitude ionosphere over varying time periods. While the former arrive nearly instantaneously with the changes in the solar wind electric field, the latter take more time, requiring auroral heating to modify upper atmospheric winds globally, leading to changes in the thermospheric wind dynamo away from the auroral zones. Such changes always differ from the quiet time state where the winds are usually patterned after daytime solar heating. We use the Multiscale Atmosphere‐Geospace Environment model (MAGE) and observations from the NASA Ionospheric Connection Explorer (ICON) mission to investigate both during the 7–8 July 2022 geomagnetic storm event. The model was able to simulate the penetrating and disturbed electric fields. The simulations showed enhanced westward winds and the wind dynamo induced upward ion drift confirmed by the ICON zonal wind and ion drift observations. The simulated zonal wind variations are slightly later in arrival at the low latitudes. We also see the penetrating electric field opposes or cancels the disturbed electric field in the MAGE simulation.more » « less
-
Abstract We present measurements of the equatorial topside ionosphere above Jicamarca made during extremely low solar flux conditions during the deep solar minimum of 2019–2020. Measurements were made in October, 2019, February, 2020, and September, 2020. The main features observed are a large and extended decrease in noontime temperatures unlike that seen in studies at moderate solar flux levels, predawn ionospheric heating as early as 0300 LT, large day‐to‐day variability in the O+/H+transition height, and negligible helium ion concentration at all altitudes. Data from the Ion Velocity Meter (IVM) instrument onboard the Ionospheric Connection Explorer (ICON) and the Topside Ionospheric Plasma Monitor (SSIES) onboard the Defense Meteorological Satellite Program (DMSP) satellites are used to assess agreement with ISR data and assist with the analysis of the predawn heating phenomena. We also analyze the data in light of the SAMI2‐PE model which shows less agreement with the data than at higher solar flux. The main areas of discrepancy with the data are outlined, such as the absence of significant predawn heating, less pronounced decreases in noontime temperatures, and much higher O+fractions at high altitudes, particularly in September. Finally, a sensitivity analysis of the model to various forcing agents such as neutral winds, plasma drifts, solar flux, and heat flow is performed. A discussion is presented on bridging the discrepancies in future model runs. Novel techniques of clutter removal and noise power bias correction are introduced and described in the appendices.more » « less
-
Regional simulations of equatorial spread F driven with, and an analysis of, WAM-IPE electric fieldsA three-dimensional, regional simulation is used to investigate ionospheric plasma density irregularities associated with Equatorial Spread F. This simulation is first driven with background electric fields derived from ISR observations. Next, the simulation is driven with electric fields taken from the WAM-IPE global model. The discrepancies between the two electric fields, particularly in the evening prereversal enhancement, produce disagreeing simulation results. The WAM-IPE electric fields are then studied through a simple sensitivity analysis of a field-line integrated electrodynamics model similar to the one used in WAM-IPE. This analysis suggests there is no simple tuning of ion composition or neutral winds that accurately reproduce ISR-observed electric fields on a day-to-day basis. Additionally, the persistency of the prereversal enhancement structure over time is studied and compared to measurements from the ICON satellite. These results suggest that WAM-IPE electric fields generally have a shorter and more variable correlation time than those measured by ICON.more » « less
-
Abstract The Starlink satellites launched on 3 February 2022 were lost before they fully arrived in their designated orbits. The loss was attributed to two moderate geomagnetic storms that occurred consecutively on 3–4 February. We investigate the thermospheric neutral mass density variation during these storms with the Multiscale Atmosphere‐Geospace Environment (MAGE) model, a first‐principles, fully coupled geospace model. Simulated neutral density enhancements are validated by Swarm satellite measurements at the altitude of 400–500 km. Comparison with standalone TIEGCM and empirical NRLMSIS 2.0 and DTM‐2013 models suggests better performance by MAGE in predicting the maximum density enhancement and resolving the gradual recovery process. Along the Starlink satellite orbit in the middle thermosphere (∼200 km altitude), MAGE predicts up to 150% density enhancement near the second storm peak while standalone TIEGCM, NRLMSIS 2.0, and DTM‐2013 suggest only ∼50% increase. MAGE also suggests altitudinal, longitudinal, and latitudinal variability of storm‐time percentage density enhancement due to height dependent Joule heating deposition per unit mass, thermospheric circulation changes, and traveling atmospheric disturbances. This study demonstrates that a moderate storm can cause substantial density enhancement in the middle thermosphere. Thermospheric mass density strongly depends on the strength, timing, and location of high‐latitude energy input, which cannot be fully reproduced with empirical models. A physics‐based, fully coupled geospace model that can accurately resolve the high‐latitude energy input and its variability is critical to modeling the dynamic response of thermospheric neutral density during storm time.more » « less
An official website of the United States government

