Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Smart home devices are constantly exchanging data with a variety of remote endpoints. This data encompasses diverse information, from device operation and status to sensitive user information like behavioral usage patterns. However, there is a lack of transparency regarding where such data goes and with whom it is potentially shared. This paper investigates the diverse endpoints that smart home Internet-of-Things (IoT) devices contact to better understand and reason about the IoT backend infrastructure, thereby providing insights into potential data privacy risks. We analyze data from 5,413 users and 25,123 IoT devices using the IoT Inspector, an open-source application allowing users to monitor traffic from smart home devices on their networks. First, we develop semi-automated techniques to map remote endpoints to organizations and their business types to shed light on their potential relationships with IoT end products. We discover that IoT devices contact more third or support-party domains than first-party domains. We also see that the distribution of contacted endpoints varies based on the user's location and across vendors manufacturing similar functional devices, where some devices are more exposed to third parties than others. Our analysis also reveals the major organizations providing backend support for IoT smart devices and provides insights into the temporal evolution of cross-border data-sharing practices.more » « lessFree, publicly-accessible full text available July 1, 2025
-
Free, publicly-accessible full text available July 8, 2025
-
Many households include children who use voice personal assistants (VPA) such as Amazon Alexa. Children benefit from the rich functionalities of VPAs and third-party apps but are also exposed to new risks in the VPA ecosystem. In this article, we first investigate “risky” child-directed voice apps that contain inappropriate content or ask for personal information through voice interactions. We build SkillBot—a natural language processing-based system to automatically interact with VPA apps and analyze the resulting conversations. We find 28 risky child-directed apps and maintain a growing dataset of 31,966 non-overlapping app behaviors collected from 3,434 Alexa apps. Our findings suggest that although child-directed VPA apps are subject to stricter policy requirements and more intensive vetting, children remain vulnerable to inappropriate content and privacy violations. We then conduct a user study showing that parents are concerned about the identified risky apps. Many parents do not believe that these apps are available and designed for families/kids, although these apps are actually published in Amazon’s “Kids” product category. We also find that parents often neglect basic precautions, such as enabling parental controls on Alexa devices. Finally, we identify a novel risk in the VPA ecosystem: confounding utterances or voice commands shared by multiple apps that may cause a user to interact with a different app than intended. We identify 4,487 confounding utterances, including 581 shared by child-directed and non-child-directed apps. We find that 27% of these confounding utterances prioritize invoking a non-child-directed app over a child-directed app. This indicates that children are at real risk of accidentally invoking non-child-directed apps due to confounding utterances.more » « less
-
Users face various privacy risks in smart homes, yet there are limited ways for them to learn about the details of such risks, such as the data practices of smart home devices and their data flow. In this paper, we present Privacy Plumber, a system that enables a user to inspect and explore the privacy "leaks" in their home using an augmented reality tool. Privacy Plumber allows the user to learn and understand the volume of data leaving the home and how that data may affect a user's privacy -- in the same physical context as the devices in question, because we visualize the privacy leaks with augmented reality. Privacy Plumber uses ARP spoofing to gather aggregate network traffic information and presents it through an overlay on top of the device in an smartphone app. The increased transparency aims to help the user make privacy decisions and mend potential privacy leaks, such as instruct Privacy Plumber on what devices to block, on what schedule (i.e., turn off Alexa when sleeping), etc. Our initial user study with six participants demonstrates participants' increased awareness of privacy leaks in smart devices, which further contributes to their privacy decisions (e.g., which devices to block).more » « less
-
Many Internet of Things devices have voice user interfaces. One of the most popular voice user interfaces is Amazon’s Alexa, which supports more than 50,000 third-party applications (“skills”). We study how Alexa’s integration of these skills may confuse users. Our survey of 237 participants found that users do not understand that skills are often operated by third parties, that they often confuse third-party skills with native Alexa functions, and that they are unaware of the functions that the native Alexa system supports. Surprisingly, users who interact with Alexa more frequently are more likely to conclude that a third-party skill is a native Alexa function. The potential for misunderstanding creates new security and privacy risks: attackers can develop third-party skills that operate without users’ knowledge or masquerade as native Alexa functions. To mitigate this threat, we make design recommendations to help users better distinguish native functionality and third-party skills, including audio and visual indicators of native and third-party contexts, as well as a consistent design standard to help users learn what functions are and are not possible on Alexa.more » « less
-
null (Ed.)Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique.more » « less