skip to main content

Title: Keeping the Smart Home Private with Smart(er) IoT Traffic Shaping
Abstract The proliferation of smart home Internet of things (IoT) devices presents unprecedented challenges for preserving privacy within the home. In this paper, we demonstrate that a passive network observer (e.g., an Internet service provider) can infer private in-home activities by analyzing Internet traffic from commercially available smart home devices even when the devices use end-to-end transport-layer encryption . We evaluate common approaches for defending against these types of traffic analysis attacks, including firewalls, virtual private networks, and independent link padding, and find that none sufficiently conceal user activities with reasonable data overhead. We develop a new defense, “stochastic traffic padding” (STP), that makes it difficult for a passive network adversary to reliably distinguish genuine user activities from generated traffic patterns designed to look like user interactions. Our analysis provides a theoretical bound on an adversary’s ability to accurately detect genuine user activities as a function of the amount of additional cover traffic generated by the defense technique.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings on Privacy Enhancing Technologies
Page Range / eLocation ID:
128 to 148
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Smart-home devices promise to make users’ lives more convenient. However, at the same time, such devices increase the possibility of breaching users’ privacy as they are tightly connected to the users’ daily lives and activities. To address privacy invasion through smart-home devices, we present ChatterHub. This novel approach accurately identifies smart-home devices’ activities with minimal monitoring of encrypted traffic in the home network. ChatterHub targets devices that can only connect to the Internet through a centralized smart-home hub (e.g., Samsung SmartThings) using Zigbee or Z-wave. Specifically, ChatterHub passively eavesdrops on encrypted network traffic from the hub and leverages machine learning techniques to classify events and states of smart-home devices. Using ChatterHub, an adversary can identify smart-home devices’ specific activities without prior knowledge of the target smart home (e.g., list of deployed devices, types of communication protocols). We evaluated the accuracy and efficiency of ChatterHub in three real-world smart-home environments, and the evaluation results show that an attacker can successfully disclose smart-home devices’ behaviors with over 88% F1 score. We further demonstrate that ChatterHub successfully recognizes privacy-sensitive activities, including open and close of a smart door lock and turn on and off of smart LED. Additionally, to mitigate the threats posed by ChatterHub, we introduce two approaches, packet padding and random sequence injection. These mitigation approaches can effectively prevent threats from ChatterHub with only 9.2MB of additional network traffic per day. 
    more » « less
  2. The number of smart home IoT (Internet of Things) devices has been growing fast in recent years. Along with the great benefits brought by smart home devices, new threats have appeared. One major threat to smart home users is the compromise of their privacy by traffic analysis (TA) attacks. Researchers have shown that TA attacks can be performed successfully on either plain or encrypted traffic to identify smart home devices and infer user activities. Tunneling traffic is a very strong countermeasure to existing TA attacks. However, in this work, we design a Signature based Tunneled Traffic Analysis (STTA) attack that can be effective even on tunneled traffic. Using a popular smart home traffic dataset, we demonstrate that our attack can achieve an 83% accuracy on identifying 14 smart home devices. We further design a simple defense mechanism based on adding uniform random noise to effectively protect against our TA attack without introducing too much overhead. We prove that our defense mechanism achieves approximate differential privacy. 
    more » « less
  3. Recent advances in cyber-physical systems, artificial intelligence, and cloud computing have driven the wide deployments of Internet-of-things (IoT) in smart homes. As IoT devices often directly interact with the users and environments, this paper studies if and how we could explore the collective insights from multiple heterogeneous IoT devices to infer user activities for home safety monitoring and assisted living. Specifically, we develop a new system, namely IoTMosaic, to first profile diverse user activities with distinct IoT device event sequences, which are extracted from smart home network traffic based on their TCP/IP data packet signatures. Given the challenges of missing and out-of-order IoT device events due to device malfunctions or varying network and system latencies, IoTMosaic further develops simple yet effective approximate matching algorithms to identify user activities from real-world IoT network traffic. Our experimental results on thousands of user activities in the smart home environment over two months show that our proposed algorithms can infer different user activities from IoT network traffic in smart homes with the overall accuracy, precision, and recall of 0.99, 0.99, and 1.00, respectively. 
    more » « less
  4. When consumers install Internet-connected "smart devices" in their homes, metadata arising from the communications between these devices and their cloud-based service providers enables adversaries privy to this traffic to profile users, even when adequate encryption is used. Internet service providers (ISPs) are one potential adversary privy to users’ incom- ing and outgoing Internet traffic and either currently use this insight to assemble and sell consumer advertising profiles or may in the future do so. With existing defenses against such profiling falling short of meeting user preferences and abilities, there is a need for a novel solution that empowers consumers to defend themselves against profiling by ISP-like actors and that is more in tune with their wishes. In this thesis, we present The Onion Router for Smart Homes (TorSH), a network of smart-home routers working collaboratively to defend smart-device traffic from analysis by ISP-like adversaries. We demonstrate that TorSH succeeds in deterring such profiling while preserving smart-device experiences and without encumbering latency-sensitive, non-smart-device experiences like web browsing. 
    more » « less
  5. Household smart devices – internet-connected thermostats, lights, door locks, and more – have increased greatly in popularity. These devices provide convenience, yet can introduce issues related to safety, security, and usability. To better understand device owners’ recent negative experiences with widely deployed smart devices and how those experiences impact the ability to provide a safe environment for users, we conducted an online, survey-based study of 72 participants who have smart devices in their own home. Participants reported struggling to diagnose and recover from power outages and network failures, misattributing some events to hacking. For devices featuring built-in learning, participants reported difficulty avoiding false alarms, communicating complex schedules, and resolving conflicting preferences. Finally, while many smart devices support end-user programming, participants reported fears of breaking the system by writing their own programs. To address these negative experiences, we propose a research agenda for improving the transparency of smart devices. 
    more » « less