skip to main content

Search for: All records

Creators/Authors contains: "Huang, E-Wen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advancements in high-entropy alloys (HEAs) and high-entropy materials (HEMs) show promising potential for different fields of applications. The emergence of HEAs and HEMs has gained significant interest for their exciting nature and properties. As they consist of five or more elements in considerable amounts, properties vary depending on the synergistic effect of combinations of elements. By selecting proper elements and manufacturing methods, better properties can be tuned. Although many unique behaviors of HEAs and HEMs are reported due to their mixing entropy, sluggish diffusion, severe lattice distortion, and multi-metallic cocktail effects, it is necessary to summarize the data to map their feasibility and potential. For example, the combined properties of high thermal stability, thermal fatigue, creep resistance, higher stiffness, and better corrosion resistance for elevated-temperature environments in aerospace applications are pursued. Moreover, gaining the environmental compatibility and longevity of service-life-oxidation behavior of these materials is one of the crucial aspects and, hence, has been recently explored. Therefore, this Research Update aims at summarizing the recent developments and findings in oxidation behavior and highlighting the challenges and controversies for future research perspectives, particularly, on the sustainability for different applications. Moreover, besides the bulk structure, the performance of the HEAs/HEMs coatings is also reviewed. 
    more » « less
  2. Tougher, lighter, and more formable and machinable metals for broader ranges of applications at higher temperatures are needed now more than ever. High-performance computing, high-resolution microscopy, and advanced spectroscopy methods, including neutrons and synchrotron x-rays, together with advances in metallurgy and metal mixology, reveal the potential of multicomponent advanced metals, such as multicomponent bulk metallic glasses and advanced high-entropy alloys. The development of new experimental approaches relates bulk properties and voxel-associated optimized properties throughout structures with high resolution. The correlations from in situ measurements greatly improve crystal plasticity-based models. This issue of MRS Bulletin overviews recent progress in the field, and this article highlights the importance of these new perspectives. The latest progress and directions in the science and technology for prospective high-temperature metals for structural applications are reported. 
    more » « less
  3. null (Ed.)
  4. Unalloyed nickel aluminide has important applications but lacks ductility at room temperature. In this study, iron-added nickel aluminide alloys exhibit plasticity enhancement. The nickel aluminide alloys are prepared with different iron contents (0, 0.25, and 1 at%) to study their plasticity. The indentation-induced deformed areas are mapped by the synchrotron X-ray diffraction to compare their plastic zones. A complimentary tight binding calculation and generalized embedded atom method demonstrate how the Fe-addition enhances the plasticity of the iron-added nickel aluminide alloys. 
    more » « less