skip to main content


Search for: All records

Creators/Authors contains: "Huang, Fuqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    This paper studies the ionosphere's response to the annular solar eclipse on 26 December 2019, utilizing the following ground‐based and space‐borne measurements: Global Navigation Satellite System (GNSS) total electron content (TEC) data, spectral radiance data from the Sentinel‐5P satellite, in situ electron density and/or temperature measurements from DMSP and Swarm satellites, and local magnetometer data. Analysis concentrated on ionospheric effects over low‐latitude regions with respect to obscuration, local time, latitude, and altitude. The main results are as follows: (1) a local TEC reduction of4–6 TECU (30–50%) was identified along the annular eclipse path, with larger depletion and longer recovery periods in the morning eclipse compared to midday. (2) The equatorial electrojet current was significantly weakened when the eclipse trajectory crossed the magnetic equator in the morning (India) sector, which contributed to large and prolonged TEC depletion therein. (3) At midday, equatorial ionization anomaly exhibited enhancements of 20–40% as well as poleward shifting of 3–4°, likely triggered by modified neutral wind and electrodynamics patterns. (4) The behavior of equatorial ionospheric electron density showed considerable altitudinal differences in the topside, exhibiting30% reduction around 500 km and30% enhancement with 300–500 KTereduction around 850 km, before the arrival of maximum eclipse. This may have been caused by the enhanced eastward electric field and equatorward neutral wind, and other possible factors are also discussed.

     
    more » « less
  2. Abstract

    In this study, we utilized both ground‐based and space‐borne observations including total electron content (TEC) from Beidou geostationary satellites, two‐dimensional TEC maps from the worldwide dense Global Navigation Satellite System receivers, ionosondes, and in situ electron density (Ne) and electron temperature (Te) from both Swarm and China Seismo‐Electromagnetic Satellite satellites, to investigate the low‐latitude ionospheric responses to the annular solar eclipse on 21 June 2020. The decrease in TEC during the eclipse at low latitudes showed a local time dependence with the largest depletions in the noon and afternoon sectors. It was also found that the TEC depletions at different latitudes in the equatorial ionization anomaly (EIA) region over the East Asian sector cannot solely be explained by the solar flux changes associated with the obscuration rate. The differences in TEC reduction between stations can be more than a factor of 2 at latitudes with the same obscuration rate of over 90%. Compared with TEC variations in the Northern Hemisphere, the TEC also underwent a considerable decrease in the EIA region in the conjugate hemisphere without eclipse shadow. Meanwhile, thehmF2near the magnetic equator increased around the onset of the eclipse, indicating an enhancement of the eastward equatorial electric field. Furthermore, the TEC decrease during the eclipse in the EIA region in both hemispheres lasted for a long period of more than 7 hr after the eclipse, with a TEC depletion of 2–6 TEC units. TheNefrom Swarm and China Seismo‐Electromagnetic Satellite satellites showed a complicated variation after the eclipse, whereas no visible change was observed inTe. The enhanced equatorial electric field, neutral wind changes, and the associated plasma transport act together to generate the observed ionospheric effects at low latitudes during the eclipse. Our results also suggest that the eclipse‐induced perturbations of dynamic processes can continue to impact the ionosphere after the eclipse.

     
    more » « less