skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ionospheric Lamb Waves With Conical Phase Fronts Following the 2022 Tonga Eruption Unveiled by BeiDou GEO Observations
Abstract Prior observational uncertainties have hindered the clear understanding of the link between tropospheric Lamb waves and ionospheric disturbances. In this study, we precisely extracted ionospheric Lamb waves originating from the epicenter of the 15 January 2022 Tonga eruption, propagating upward in a conical structure. This was achieved by using line‐of‐sight observations from the BeiDou geostationary satellites, which eliminated the spatiotemporal ambiguity introduced by the relative motion of Global Positioning System satellites, enabling the clear extraction of the Lamb signal in the ionosphere. The observed L0 mode speed (∼323 m/s) and period (∼30 min) were consistent with those of the tropospheric Lamb wave. It suggested that the ionospheric Lamb wave is likely driven by the surface Lamb wave, leading to a conical wave‐front that extends in altitude. This study highlights the significant role of Lamb waves in transmitting energy from epicenters through Earth's atmosphere and plasma systems.  more » « less
Award ID(s):
2149698 2033787 1952737
PAR ID:
10600225
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
52
Issue:
10
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The global 3‐dimensional structure of the concentric traveling ionospheric disturbances (CTIDs) triggered by 2022 Tonga volcano was reconstructed by using the 3‐dimensional computerized ionospheric tomography (3DCIT) technique and extensive global navigation satellite system (GNSS) observations. This study provides the first estimation of the CTIDs vertical wavelengths, ∼736 km, which was much larger than the gravity wave (GW) vertical wavelength, 240–400 km, estimated using ICON neutral wind observations. Notable trend with the variation of azimuth was also found in horizontal speeds at 200 and 500 km altitudes and differences between them. These results imply that (a) the global propagation of Lamb waves determined the arrival time of local ionospheric disturbances, and (b) the arriving Lamb waves caused vertical atmospheric perturbations that are not typical of GWs, resulting in local thermospheric horizontal wave propagation which is faster than the Lamb wave propagation at lower altitudes. 
    more » « less
  2. Abstract The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events. 
    more » « less
  3. The Tonga volcano eruption at 04:14:45 UT on 2022-01-15 released enormous amounts of energy into the atmosphere, triggering very significant geophysical variations not only in the immediate proximity of the epicenter but also globally across the whole atmosphere. This study provides a global picture of ionospheric disturbances over an extended period for at least 4 days. We find traveling ionospheric disturbances (TIDs) radially outbound and inbound along entire Great-Circle loci at primary speeds of ∼300–350 m/s (depending on the propagation direction) and 500–1,000 km horizontal wavelength for front shocks, going around the globe for three times, passing six times over the continental US in 100 h since the eruption. TIDs following the shock fronts developed for ∼8 h with 10–30 min predominant periods in near- and far- fields. TID global propagation is consistent with the effect of Lamb waves which travel at the speed of sound. Although these oscillations are often confined to the troposphere, Lamb wave energy is known to leak into the thermosphere through channels such as atmospheric resonance at acoustic and gravity wave frequencies, carrying substantial wave amplitudes at high altitudes. Prevailing Lamb waves have been reported in the literature as atmospheric responses to the gigantic Krakatoa eruption in 1883 and other geohazards. This study provides substantial first evidence of their long-duration imprints up in the global ionosphere. This study was enabled by ionospheric measurements from 5,000+ world-wide Global Navigation Satellite System (GNSS) ground receivers, demonstrating the broad implication of the ionosphere measurement as a sensitive detector for atmospheric waves and geophysical disturbances. 
    more » « less
  4. Abstract This study investigates the comprehensive magnetospheric and ionospheric phenomena during a substorm event on 14 December 2013. The methodology involves analyzing data from satellites located within the plasmasphere at dusk‐side of the Earth, as well as data from ionospheric satellites mapped in the subauroral region. Magnetospheric data were analyzed to identify key features during the substorm event. Proton injection into the ring current, presence of proton and helium band electromagnetic ion cyclotron (EMIC) waves with different polarization characteristics, and harmonic structures in these EMIC waves were identified. These harmonic structures coincided with the appearance of magnetosonic waves characterized by rising tone structures and heating of low‐energy protons (<100 eV). Ionospheric satellites (DMSP F17 and POES 15) recorded enhanced proton precipitation contributing to the intensification of subauroral proton arcs. The analysis revealed that these enhanced proton fluxes were associated with variations in field‐aligned currents (FACs) and drove dynamics within the Sub‐Auroral Polarization Streams (SAPS). By combining and analyzing the magnetospheric and ionospheric data sets, this study provides a comprehensive understanding of magnetosphere‐ionosphere coupling during substorms, particularly on the duskside. The complex interdependence and causal relationships among EMIC waves, proton precipitation, subauroral proton arcs, FAC variations, and SAPS dynamics were highlighted. 
    more » « less
  5. Abstract This paper investigates the local and global ionospheric responses to the 2022 Tonga volcano eruption, using ground‐based Global Navigation Satellite System total electron content (TEC), Swarm in situ plasma density measurements, the Ionospheric Connection Explorer (ICON) Ion Velocity Meter (IVM) data, and ionosonde measurements. The main results are as follows: (a) A significant local ionospheric hole of more than 10 TECU depletion was observed near the epicenter ∼45 min after the eruption, comprising of several cascading TEC decreases and quasi‐periodic oscillations. Such a deep local plasma hole was also observed by space‐borne in situ measurements, with an estimated horizontal radius of 10–15° and persisted for more than 10 hr in ICON‐IVM ion density profiles until local sunrise. (b) Pronounced post‐volcanic evening equatorial plasma bubbles (EPBs) were continuously observed across the wide Asia‐Oceania area after the arrival of volcano‐induced waves; these caused aNedecrease of 2–3 orders of magnitude at Swarm/ICON altitude between 450 and 575 km, covered wide longitudinal ranges of more than 140°, and lasted around 12 hr. (c) Various acoustic‐gravity wave modes due to volcano eruption were observed by accurate Beidou geostationary orbit (GEO) TEC, and the huge ionospheric hole was mainly caused by intense shock‐acoustic impulses. TEC rate of change index revealed globally propagating ionospheric disturbances at a prevailing Lamb‐wave mode of ∼315 m/s; the large‐scale EPBs could be seeded by acoustic‐gravity resonance and coupling to less‐damped Lamb waves, under a favorable condition of volcano‐induced enhancement of dusktime plasma upward E×B drift and postsunset rise of the equatorial ionospheric F‐layer. 
    more » « less