skip to main content

Search for: All records

Creators/Authors contains: "Huang, Huang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photoimmunoconjugates are a unique class of antibody–dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2–BPD sample. The binding of UIC2–BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2–BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro . Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2–BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to targetmore »proteins expressed on the surface of cancer cells.« less
  2. Mechanical search, the finding and extracting of a known target object from a cluttered environment, is a key challenge in automating warehouse, home, retail, and industrial tasks. In this paper, we consider contexts in which occluding objects are to remain untouched, thus minimizing disruptions and avoiding toppling. We assume a 6-DOF robot with an RGBD camera and unicontact suction gripper mounted on its wrist. With this setup, the robot can move both camera and gripper in order to identify a suitable approach vector, reach in to achieve a suction grasp of the target object, and extract it. We present AVPLUG: Approach Vector PLanning for Unicontact Grasping, an algorithm that uses an octree occupancy model and Minkowski sum computation to find a collision-free grasp approach vector. Experiments in simulation and with a physical Fetch robot suggest that AVPLUG finds an approach vector up to 20× faster than a baseline search policy.