skip to main content


Search for: All records

Creators/Authors contains: "Huang, Kai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High-entropy alloys (HEAs) provide new research avenues for alloy combinations in the periodic table, opening numerous possibilities in novel-alloy applications. However, their electrical characteristics have been relatively underexplored. The challenge in establishing an HEA electrical conductivity model lies in the changes in electronic characteristics caused by lattice distortion and complexity of nanostructures. Here we show a low-frequency electrical conductivity model for the Nb-Mo-Ta-W HEA system. The cocktail effect is found to explain trends in electrical-conductivity changes in HEAs, while the magnitude of the reduction is understood by the calculated plasma frequency, free electron density, and measured relaxation time by terahertz spectroscopy. As a result, the refractory HEA Nb15Mo35Ta15W35thin film exhibits both high hardness and excellent conductivity. This combination of Nb15Mo35Ta15W35makes it suitable for applications in atomic force microscopy probe coating, significantly improving their wear resistance and atomic-scale image resolution.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Free, publicly-accessible full text available October 8, 2025
  3. Free, publicly-accessible full text available May 7, 2025
  4. Abstract

    Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.

    Graphical Abstract

     
    more » « less
  5. Understanding the preferences for new and future transportation technologies is important to ensure an efficient and equitable future transportation system. A survey was conducted of Americans’ preferences for several such technologies. Americans are concerned about vehicle range and charging station availability for electric vehicles (EVs) and hesitant about autonomous vehicle (AV) safety. Opinions about many transportation technologies, such as vertical takeoff and landing (i.e., air taxis), shared parking, and air-drone delivery are mixed. These less familiar technologies require continued tracking of preferences. A 55% increase is estimated in the probability of an individual choosing a battery electric vehicle (BEV) pickup truck if its fuel economy increases by about 9%. This result supports a market for BEV pickup trucks currently under development by many automakers. The preference for vehicle autonomation appears to depend on the use case. Driving task automation is preferred by residents of low-density, car-dependent areas where long commutes are common. In contrast, automated parking technologies are favored by those living in denser communities. Intermittent bus lanes are favored by those living in high population density areas, but not among those in areas with high shares of zero-vehicle households. These results provide indications of where to direct future research in the field.

     
    more » « less
  6. Metal–insulator–semiconductor/MIS-based photoelectrochemical (PEC) water splitting provides a scalable and integrated platform to harness renewable solar energy for green hydrogen production.

     
    more » « less
  7. Myokines and exosomes, originating from skeletal muscle, are shown to play a significant role in maintaining brain homeostasis. While exercise has been reported to promote muscle secretion, little is known about the effects of neuronal innervation and activity on the yield and molecular composition of biologically active molecules from muscle. As neuromuscular diseases and disabilities associated with denervation impact muscle metabolism, we hypothesize that neuronal innervation and firing may play a pivotal role in regulating secretion activities of skeletal muscles. We examined this hypothesis using an engineered neuromuscular tissue model consisting of skeletal muscles innervated by motor neurons. The innervated muscles displayed elevated expression of mRNAs encoding neurotrophic myokines, such as interleukin-6, brain-derived neurotrophic factor, and FDNC5, as well as the mRNA of peroxisome-proliferator-activated receptor γ coactivator 1α, a key regulator of muscle metabolism. Upon glutamate stimulation, the innervated muscles secreted higher levels of irisin and exosomes containing more diverse neurotrophic microRNAs than neuron-free muscles. Consequently, biological factors secreted by innervated muscles enhanced branching, axonal transport, and, ultimately, spontaneous network activities of primary hippocampal neurons in vitro. Overall, these results reveal the importance of neuronal innervation in modulating muscle-derived factors that promote neuronal function and suggest that the engineered neuromuscular tissue model holds significant promise as a platform for producing neurotrophic molecules.

     
    more » « less
    Free, publicly-accessible full text available May 7, 2025
  8. Remote monitoring and evaluation of pulmonary diseases via telemedicine are important to disease diagnosis and management, but current telemedicine solutions have limited capability of objectively examining the airway's internal physiological conditions that are crucial to pulmonary disease evaluation. Existing solutions based on smartphone sensing are also limited to externally monitoring breath rates, respiratory events, or lung function. In this paper, we present PTEase, a new system design that addresses these limitations and uses commodity smartphones to examine the airway's internal physiological conditions. PTEase uses active acoustic sensing to measure the internal changes of lower airway caliber, and then leverages machine learning to analyze the sensory data for pulmonary disease evaluation. We implemented PTEase as a smartphone app, and verified its measurement error in lab-controlled settings as <10%. Clinical studies further showed that PTEase reaches 75% accuracy on disease prediction and 11%-15% errors in estimating lung function indices. Given that such accuracy is comparable with that in clinical practice using spirometry, PTEase can be reliably used as an assistive telemedicine tool for disease evaluation and monitoring. 
    more » « less