skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Huang, Luyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose HEPOS, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with HEPOS, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GOVREPORT, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors. 
    more » « less