Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper presents an approach to passively realize any specified object spatial compliance using the grasp of a robotic hand. The kinematically anthropomorphic hands considered have multiple 4-joint fingers making hard point contact with the held object, and the joints of each finger have selectable passive elastic behavior. It is shown that the space of passively realizable compliances is restricted by the kinematic structure of the anthropomorphic hand. To achieve an arbitrary compliant behavior, fingers must be able to adjust their orientation. Synthesis procedures for grasps having 3, 4, and 5 or more fingers are developed. These procedures identify the finger configurations and the individual finger joint compliances needed to passively achieve any specified spatial object compliance matrix in the 20-dimensional subspace of grasp-realizable behaviors.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract In this paper, the realization of any specified planar Cartesian compliance for an object grasped by a compliant hand is addressed. The hands considered have 2 or more fingers for which each has 3 modulated elastic joints and predetermined link lengths. Geometric construction-based compliance synthesis procedures are developed. Using these procedures, a large set of compliant behaviors can be realized by a single hand simply by adjusting the configuration of each finger and by adjusting the joint stiffness (using variable stiffness actuation) of each finger joint.more » « less
-
Abstract In this paper, the realization of any specified planar compliance with two 3R serial elastic mechanisms is addressed. Using the concept of dual elastic mechanisms, it is shown that the realization of a compliant behavior with two serial mechanisms connected in parallel is equivalent to its realization with a 6-spring fully parallel mechanism. Since the spring axes of a 6-spring parallel mechanism indicate the geometry of a dual 3R serial mechanism, a new synthesis procedure for the realization of a stiffness matrix with a 6-spring parallel mechanism is first developed. Then, this result is extended to a geometric construction-based synthesis procedure for two 3-joint serial mechanisms.more » « less
-
Abstract In this article, the synthesis of any specified planar compliance with a serial elastic mechanism having previously determined link lengths is addressed. For a general n-joint serial mechanism, easily assessed necessary conditions on joint locations for the realization of a given compliance are identified. Geometric construction-based synthesis procedures for five-joint and six-joint serial mechanisms having kinematically redundant fixed link lengths are developed. By using these procedures, a given serial manipulator can achieve a large set of different compliant behaviors by using variable stiffness actuation and by adjusting the mechanism configuration.more » « less