skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Tianhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Analytic workloads on terabyte data-sets are often run in the cloud, where application and storage servers are separate and connected via network. In order to saturate the storage bandwidth and to hide the long storage latency, such a solution requires an expensive server cluster with sufficient aggregate DRAM capacity and hardware threads. An alternative solution is to push the query computation into storage servers. In this paper we present an in-storage Analytics QUery Offloading MAchiNe (AQUOMAN) to “offload” most SQL operators, including multi-way joins, to SSDs. AQUOMAN executes Table Tasks, which apply a static dataflow graph of SQL operators to relational tables to produce an output table. Table Tasks use a streaming computation model, which allows AQUOMAN to process queries with a reasonable amount of DRAM for intermediate results. AQUOMAN is a general analytic query processor, which can be integrated in the database software stack transparently. We have built a prototype of AQUOMAN in FPGAs, and using TPC-H benchmarks on 1TB data sets, shown that a single instance of 1TB AQUOMAN disk, on average, can free up 70% CPU cycles and reduce DRAM usage by 60%. One way to visualize this saving is to think that if we run queries sequentially and ignore inter-query page cache reuse, MonetDB running on a 4-core, 16GB-DRAM machine with AQUOMAN augmented SSDs performs, on average, as well as a MonetDB running on a 32-core, 128GB-DRAM machine with standard SSDs. 
    more » « less