skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Yu-Han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Superparamagnetic tunnel junctions (sMTJs) are emerging as promising components for stochastic units in neuromorphic computing owing to their tunable random switching behavior. Conventional MTJ control methods, such as spin-transfer torque (STT) and spin–orbit torque (SOT), often require substantial power. Here, we introduce the voltage-controlled exchange coupling (VCEC) mechanism, enabling the switching between antiparallel and parallel states in sMTJs with an ultralow power consumption of only 40 nW, approximately 2 orders of magnitude lower than conventional STT-based sMTJs. This mechanism yields a sigmoid-shaped output response, making it ideally suited to neuromorphic computing applications. Furthermore, we validate the feasibility of integrating VCEC with SOT current control, offering an additional dimension for magnetic state manipulation. This work marks the first practical demonstration of the VCEC effect in sMTJs, highlighting its potential as a low-power control solution for probabilistic bits in advanced computing systems. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  2. Abstract Voltage‐Gated Spin‐Orbit‐Torque (VGSOT) Magnetic Random‐Access Memory (MRAM) is a promising candidate for reducing writing energy and improving writing speed in emerging memory and in‐memory computing applications. However, conventional Voltage Controlled Magnetic Anisotropy (VCMA) approaches are often inefficient due to the low VCMA coefficient at the CoFeB/MgO interface. Additionally, traditional heavy metal/perpendicular magnetic anisotropy (PMA) ferromagnet bilayers require an external magnetic field to overcome symmetry constraints and achieve deterministic SOT switching. Here, a novel and industry‐compatible SOT underlayer for next‐generation VGSOT MRAM by employing a composite heavy metal tri‐layer with a high work function is presented. This approach achieves a VCMA coefficient exceeding 100 fJ V−1m−1through electron depletion effects, which is ten times larger than that observed with a pure W underlayer. Furthermore, it is demonstrated that this composite heavy metal SOT underlayer facilitates the integration of VCMA with opposite spin Hall angles, enabling field‐free SOT switching in industry‐compatible PMA CoFeB/MgO systems. 
    more » « less