skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 11, 2026

Title: Energy-Efficient Stochastic Signal Manipulation in Superparamagnetic Tunnel Junctions via Voltage-Controlled Exchange Coupling
Superparamagnetic tunnel junctions (sMTJs) are emerging as promising components for stochastic units in neuromorphic computing owing to their tunable random switching behavior. Conventional MTJ control methods, such as spin-transfer torque (STT) and spin–orbit torque (SOT), often require substantial power. Here, we introduce the voltage-controlled exchange coupling (VCEC) mechanism, enabling the switching between antiparallel and parallel states in sMTJs with an ultralow power consumption of only 40 nW, approximately 2 orders of magnitude lower than conventional STT-based sMTJs. This mechanism yields a sigmoid-shaped output response, making it ideally suited to neuromorphic computing applications. Furthermore, we validate the feasibility of integrating VCEC with SOT current control, offering an additional dimension for magnetic state manipulation. This work marks the first practical demonstration of the VCEC effect in sMTJs, highlighting its potential as a low-power control solution for probabilistic bits in advanced computing systems.  more » « less
Award ID(s):
2230963
PAR ID:
10642807
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Nano Letters
Volume:
25
Issue:
23
ISSN:
1530-6984
Page Range / eLocation ID:
9181 to 9188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Non-volatile memory (NVM) technologies such as spin-transfer torque magnetic random access memory (STT-MRAM) and spin-orbit torque magnetic random access memory (SOT-MRAM) have significant advantages compared to conventional SRAM due to their non-volatility, higher cell density, and scalability features. While previous work has investigated several architectural implications of NVM for generic applications, in this work we present DeepNVM, a framework to characterize, model, and analyze NVM-based caches in GPU architectures for deep learning (DL) applications by combining technologyspecific circuit-level models and the actual memory behavior of various DL workloads. We present both iso-capacity and isoarea performance and energy analysis for systems whose lastlevel caches rely on conventional SRAM and emerging STT-MRAM and SOT-MRAM technologies. In the iso-capacity case, STT-MRAM and SOT-MRAM provide up to 4.2× and 5× energy-delay product (EDP) reduction and 2.4× and 3× area reduction compared to conventional SRAM, respectively. Under iso-area assumptions, STT-MRAM and SOT-MRAM provide 2.3× EDP reduction on average across all workloads when compared to SRAM. Our comprehensive cross-layer framework is demonstrated on STT-/SOT-MRAM technologies and can be used for the characterization, modeling, and analysis of any NVM technology for last-level caches in GPU platforms for deep learning applications. 
    more » « less
  2. The emergence of embedded magnetic random-access memory (MRAM) and its integration in mainstream semiconductor manufacturing technology have created an unprecedented opportunity for engineering computing systems with improved performance, energy efficiency, lower cost, and unconventional computing capabilities. While the initial interest in the existing generation of MRAM—which is based on the spin-transfer torque (STT) effect in ferromagnetic tunnel junctions—was driven by its nonvolatile data retention and lower cost of integration compared to embedded Flash (eFlash), the focus of MRAM research and development efforts is increasingly shifting toward alternative write mechanisms (beyond STT) and new materials (beyond ferromagnets) in recent years. This has been driven by the need for better speed vs density and speed vs endurance trade-offs to make MRAM applicable to a wider range of memory markets, as well as to utilize the potential of MRAM in various unconventional computing architectures that utilize the physics of nanoscale magnets. In this Perspective, we offer an overview of spin–orbit torque (SOT) as one of these beyond-STT write mechanisms for the MRAM devices. We discuss, specifically, the progress in developing SOT-MRAM devices with perpendicular magnetization. Starting from basic symmetry considerations, we discuss the requirement for an in-plane bias magnetic field which has hindered progress in developing practical SOT-MRAM devices. We then discuss several approaches based on structural, magnetic, and chiral symmetry-breaking that have been explored to overcome this limitation and realize bias-field-free SOT-MRAM devices with perpendicular magnetization. We also review the corresponding material- and device-level challenges in each case. We then present a perspective of the potential of these devices for computing and security applications beyond their use in the conventional memory hierarchy. 
    more » « less
  3. While magnetoresistive random-access memory (MRAM) stands out as a leading candidate for embedded nonvolatile memory and last-level cache applications, its endurance is compromised by substantial self-heating due to the high programming current density. The effect of self-heating on the endurance of the magnetic tunnel junction (MTJ) has primarily been studied in spin-transfer torque (STT)-MRAM. Here, we analyze the transient temperature response of two-terminal spin–orbit torque (SOT)-MRAM with a 1 ns switching current pulse using electro-thermal simulations. We estimate a peak temperature range of 350–450 °C in 40 nm diameter MTJs, underscoring the critical need for thermal management to improve endurance. We suggest several thermal engineering strategies to reduce the peak temperature by up to 120 °C in such devices, which could improve their endurance by at least a factor of 1000× at 0.75 V operating voltage. These results suggest that two-terminal SOT-MRAM could significantly outperform conventional STT-MRAM in terms of endurance, substantially benefiting from thermal engineering. These insights are pivotal for thermal optimization strategies in the development of MRAM technologies. 
    more » « less
  4. Increasing dampinglike spin-orbit torque (SOT) is both of fundamental importance for enabling new research into spintronics phenomena and also technologically urgent for advancing low-power spin-torque memory, logic, and oscillator devices. Here, we demonstrate that enhancing interfacial scattering by inserting ultra-thin layers within a spin Hall metals with intrinsic or side-jump mechanisms can significantly enhance the spin Hall ratio. The dampinglike SOT was enhanced by a factor of 2 via sub-monolayer Hf insertion, as evidenced by both harmonic response measurements and current- induced switching of in-plane magnetized magnetic memory devices with the record low critical switching current of ~73 μA (switching current density ≈ 3.6×106 A/cm2). This work demonstrates a very effective strategy for maximizing dampinglike SOT for low-power spin-torque devices. 
    more » « less
  5. With the increase in GPU register file (RF) size, its power consumption has also increased. Since RF exists at the highest level in cache hierarchy, designing it with memories with high write latency/energy (e.g., spin transfer torque RAM) can lead to large energy loss. In this paper, we present an spin orbit torque RAM (SOT-RAM) based RF design which provides higher energy efficiency than SRAM and STT-RAM RFs while maintaining performance same as that of SRAM RF. To further improve energy efficiency of SOT-RAM based RF, we propose avoiding redundant bit-writes to RF. Compared to SRAM RF, SOT-RAM RF saves 18.6% energy and by using our technique for avoiding redundant writes, the energy saving can be increased to 44.3%, without harming performance. 
    more » « less