skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hunt, Darrien"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. With the increased use of machine learning models, there is a need to understand how machine learning models can be maliciously targeted. Understanding how these attacks are ‘enacted’ helps in being able to ‘harden’ models so that it is harder for attackers to evade detection. We want to better understand object detection, the underlying algorithms, different perturbation approaches that can be utilized to fool these models. To this end, we document our findings as a review of existing literature and open-source repositories related to Computer Vision and Object Detection. We also look at how Adversarial Patches impact object detection algorithms. Our objective was to replicate existing processes in order to reproduce results to further our research on adversarial patches. 
    more » « less
  2. With the increased use of machine learning models, there is a need to understand how machine learning models can be maliciously targeted. Understanding how these attacks are ‘enacted’ helps in being able to ‘harden’ models so that it is harder for attackers to evade detection. We want to better understand object detection, the underlying algorithms, different perturbation approaches that can be utilized to fool these models. To this end, we document our findings as a review of existing literature and open-source repositories related to Computer Vision and Object Detection. We also look at how Adversarial Patches impact object detection algorithms. Our objective was to replicate existing processes in order to reproduce results to further our research on adversarial patches. 
    more » « less