Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Models struggle to accurately simulate observed sea ice thickness changes, which could be partially due to inadequate representation of thermodynamic processes. We analyzed co‐located winter observations of the Arctic sea ice from the Multidisciplinary Drifting Observatory for the Study of the Arctic Climate for evaluating and improving thermodynamic processes in sea ice models, aiming to enable more accurate predictions of the warming climate system. We model the sea ice and snow heat conduction for observed transects forced by realistic boundary conditions to understand the impact of the non‐resolved meter‐scale snow and sea ice thickness heterogeneity on horizontal heat conduction. Neglecting horizontal processes causes underestimating the conductive heat flux of 10% or more. Furthermore, comparing model results to independent temperature observations reveals a ∼5 K surface temperature overestimation over ice thinner than 1 m, attributed to shortcomings in parameterizing surface turbulent and radiative fluxes rather than the conduction. Assessing the model deficiencies and parameterizing these unresolved processes is required for improved sea ice representation.more » « less
-
Abstract Comparing helicopter‐borne surface temperature maps in winter and optical orthomosaics in summer from the year‐long Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition, we find a strong geometric correlation between warm anomalies in winter and melt pond location the following summer. Warm anomalies are associated with thinner snow and ice, that is, surface depression and refrozen leads, that allow for water accumulation during melt. Warm surface temperature anomalies in January were 0.3–2.5 K warmer on sea ice that later formed melt ponds. A one‐dimensional steady‐state thermodynamic model shows that the observed surface temperature differences are in line with the observed ice thickness and snow depth. We demonstrate the potential of seasonal prediction of summer melt pond location and coverage from winter surface temperature observations. A threshold‐based classification achieves a correct classification for 41% of the melt ponds.more » « less
-
Melt ponds on sea ice play an important role in the Arctic climate system. Their presence alters the partitioning of solar radiation: decreasing reflection, increasing absorption and transmission to the ice and ocean, and enhancing melt. The spatiotemporal properties of melt ponds thus modify ice albedo feedbacks and the mass balance of Arctic sea ice. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition presented a valuable opportunity to investigate the seasonal evolution of melt ponds through a rich array of atmosphere-ice-ocean measurements across spatial and temporal scales. In this study, we characterize the seasonal behavior and variability in the snow, surface scattering layer, and melt ponds from spring melt to autumn freeze-up using in situ surveys and auxiliary observations. We compare the results to satellite retrievals and output from two models: the Community Earth System Model (CESM2) and the Marginal Ice Zone Modeling and Assimilation System (MIZMAS). During the melt season, the maximum pond coverage and depth were 21% and 22 ± 13 cm, respectively, with distribution and depth corresponding to surface roughness and ice thickness. Compared to observations, both models overestimate melt pond coverage in summer, with maximum values of approximately 41% (MIZMAS) and 51% (CESM2). This overestimation has important implications for accurately simulating albedo feedbacks. During the observed freeze-up, weather events, including rain on snow, caused high-frequency variability in snow depth, while pond coverage and depth remained relatively constant until continuous freezing ensued. Both models accurately simulate the abrupt cessation of melt ponds during freeze-up, but the dates of freeze-up differ. MIZMAS accurately simulates the observed date of freeze-up, while CESM2 simulates freeze-up one-to-two weeks earlier. This work demonstrates areas that warrant future observation-model synthesis for improving the representation of sea-ice processes and properties, which can aid accurate simulations of albedo feedbacks in a warming climate.more » « less
An official website of the United States government
