skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Huynh, Brandon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many researchers and industry professionals believe Augmented Reality (AR) to be the next step in personal computing. However, the idea of an always-on context-aware AR device presents new and unique challenges to the way users organize multiple streams of information. What does multitasking look like and when should applications be tied to specific elements in the environment? In this exploratory study, we look at one such element: physical objects, and explore an object-centric approach to multitasking in AR. We developed 3 prototype applications that operate on a subset of objects in a simulated test environment. We performed a pilot study of our multitasking solution with a novice user, domain expert, and system expert to develop insights into the future of AR application design. 
    more » « less
  2. Augmented reality (AR) interfaces increasingly utilize artificial intelligence systems to tailor content and experiences to the user. We explore the effects of one such system — a recommender system for online shopping — which allows customers to view personalized product recommendations in the physical spaces where they might be used. We describe results of a [Formula: see text] condition exploratory study in which recommendation quality was varied across three user interface types. Our results highlight potential differences in user perception of the recommended objects in an AR environment. Specifically, users rate product recommendations significantly higher in AR and in a 3D browser interface, and show a significant increase in trust in the recommender system, compared to a web interface with 2D product images. Through semi-structured interviews, we gather participant feedback which suggests AR interfaces perform better due to their ability to view products within the physical context where they will be used. 
    more » « less