- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chuprov, Sergei (1)
-
Hyland, Matthew (1)
-
Marathe, Chirayu Anil (1)
-
Reznik, Leon (1)
-
Zatsarenko, Raman (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In industrial applications, Machine Learning (ML) services are often deployed on cloud infrastructure and require a transfer of the input data over a network, which is susceptible to Quality of Service (QoS) degradation. In this paper we investigate the robustness of industrial ML classifiers towards varying Data Quality (DQ) due to degradation in network QoS. We define the robustness of an ML model as the ability to maintain a certain level of performance under variable levels of DQ at its input. We employ the classification accuracy as the performance metric for the ML classifiers studied. The POWDER testbed is utilized to create an experimental setup consisting of a real-world wireless network connecting two nodes. We transfer multiple video and image files between the two nodes under varying degrees of packet loss and varying buffer sizes to create degraded data. We then evaluate the performance of AWS Rekognition, a commercial ML tool for on-demand object detection, on corrupted video and image data. We also evaluate the performance of YOLOv7 to compare the performance of a commercial and an open-source model. As a result we demonstrate that even a slight degree of packet loss, 1% for images and 0.2% for videos, can have a drastic impact on the classification performance of the system. We discuss the possible ways to make industrial ML systems more robust to network QoS degradation.more » « less