skip to main content


Search for: All records

Creators/Authors contains: "Hyman, James M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Simple dynamic modeling tools can help generate real-time short-term forecasts with quantified uncertainty of the trajectory of diverse growth processes unfolding in nature and society, including disease outbreaks. An easy-to-use and flexible toolbox for this purpose is lacking. This tutorial-based primer introduces and illustratesGrowthPredict, a user-friendly MATLAB toolbox for fitting and forecasting time-series trajectories using phenomenological dynamic growth models based on ordinary differential equations. This toolbox is accessible to a broad audience, including students training in mathematical biology, applied statistics, and infectious disease modeling, as well as researchers and policymakers who need to conduct short-term forecasts in real-time. The models included in the toolbox capture exponential and sub-exponential growth patterns that typically follow a rising pattern followed by a decline phase, a common feature of contagion processes. Models include the 1-parameter exponential growth model and the 2-parameter generalized-growth model, which have proven useful in characterizing and forecasting the ascending phase of epidemic outbreaks. It also includes the 2-parameter Gompertz model, the 3-parameter generalized logistic-growth model, and the 3-parameter Richards model, which have demonstrated competitive performance in forecasting single peak outbreaks. We provide detailed guidance on forecasting time-series trajectories and available software (https://github.com/gchowell/forecasting_growthmodels), including the full uncertainty distribution derived through parametric bootstrapping, which is needed to construct prediction intervals and evaluate their accuracy. Functions are available to assess forecasting performance across different models, estimation methods, error structures in the data, and forecasting horizons. The toolbox also includes functions to quantify forecasting performance using metrics that evaluate point and distributional forecasts, including the weighted interval score. This tutorial and toolbox can be broadly applied to characterizing and forecasting time-series data using simple phenomenological growth models. As a contagion process takes off, the tools presented in this tutorial can help create forecasts to guide policy regarding implementing control strategies and assess the impact of interventions. The toolbox functionality is demonstrated through various examples, including a tutorial video, and the examples use publicly available data on the monkeypox (mpox) epidemic in the USA.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Limiting the injection rate to restrict the pressure below a threshold at a critical location can be an important goal of simulations that model the subsurface pressure between injection and extraction wells. The pressure is approximated by the solution of Darcy’s partial differential equation for a given permeability field. The subsurface permeability is modeled as a random field since it is known only up to statistical properties. This induces uncertainty in the computed pressure. Solving the partial differential equation for an ensemble of random permeability simulations enables estimating a probability distribution for the pressure at the critical location. These simulations are computationally expensive, and practitioners often need rapid online guidance for real-time pressure management. An ensemble of numerical partial differential equation solutions is used to construct a Gaussian process regression model that can quickly predict the pressure at the critical location as a function of the extraction rate and permeability realization. The Gaussian process surrogate analyzes the ensemble of numerical pressure solutions at the critical location as noisy observations of the true pressure solution, enabling robust inference using the conditional Gaussian process distribution. Our first novel contribution is to identify a sampling methodology for the random environment and matching kernel technology for which fitting the Gaussian process regression model scales as O(nlog 𝑛) instead of the typical O(𝑛^3 ) rate in the number of samples 𝑛 used to fit the surrogate. The surrogate model allows almost instantaneous predictions for the pressure at the critical location as a function of the extraction rate and permeability realization. Our second contribution is a novel algorithm to calibrate the uncertainty in the surrogate model to the discrepancy between the true pressure solution of Darcy’s equation and the numerical solution. Although our method is derived for building a surrogate for the solution of Darcy’s equation with a random permeability field, the framework broadly applies to solutions of other partial differential equations with random coefficients. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Free, publicly-accessible full text available June 1, 2025