skip to main content

Search for: All records

Creators/Authors contains: "Iaconi, Roberto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present small-scale 3D hydrodynamical simulations of the evolution of a 0.3 M⊙ main-sequence (MS) star that launches two perpendicular jets within the envelope of a 0.88 M⊙ red giant (RG). Based on previous large-scale simulations, we study the dynamics of the jets either when the secondary star is grazing, when it has plunged-in, or when it is well within the envelope of the RG (in each stage for ∼11 d). The dynamics of the jets through the common envelope (CE) depend on the conditions of the environment as well as on their powering. In the grazing stage and the commencement of the plunge self-regulated jets need higher efficiencies to break out of the envelope of the RG. Deep inside the CE, on the time-scales simulated, jets are choked independently of whether they are self-regulated or constantly powered. Jets able to break out of the envelope of the RG in large-scale simulations, are choked in our small-scale simulations. The accreted angular momentum on to the secondary star is not large enough to form a disc. The mass accretion on to the MS star is 1–10 per cent of the Bondi–Hoyle–Littleton rate (∼10−3–10−1 M⊙ yr−1). High-luminosity emission, from X-rays to ultraviolet and optical, is expected ifmore »the jets break out of the CE. Our simulations illustrate the need for inclusion of more realistic accretion and jet models in the dynamical evolution of the CEs.

    « less
  2. ABSTRACT During the common-envelope binary interaction, the expanding layers of the gaseous common envelope recombine and the resulting recombination energy has been suggested as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative study between simulations with and without the inclusion of recombination energy. We use two distinct setups, comprising a 0.88- and 1.8-M⊙ giants, that have been studied before and can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not affected by the choice of equation of state (EoS). In other words, simulations that unbind but a small fraction of the envelope result in similar final separations to those that, thanks to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS results in a much greater fraction of unbound envelope and we demonstrate the cause of this to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy that is allowed to do work should be about half of that which our adiabatic simulations use. (iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen recombination energy that unbinds the gas and we determine thatmore »all helium recombination energy is thermalized in the envelope and does work. (v) The outer regions of the expanding common envelope are likely to see the formation of dust. This dust would promote additional unbinding and shaping of the ejected envelope into axisymmetric morphologies.« less