Abstract The centers of our Galaxy and the nearby Messier 87 are known to contain supermassive black holes, which support accretion flows that radiate across the electromagnetic spectrum. Although the composition of the accreting gas is unknown, it is likely a mix of ionized hydrogen and helium. We use a simple analytic model and a suite of numerical general relativistic magnetohydrodynamic accretion simulations to study how polarimetric images and spectral energy distributions of the source are influenced by the hydrogen/helium content of the accreting matter. We aim to identify general trends rather than make quantitatively precise predictions, since it is not possible to fully explore the parameter space of accretion models. If the ion-to-electron temperature ratio is fixed, then increasing the helium fraction increases the gas temperature; to match the observational flux density constraints, the number density of electrons and magnetic field strengths must therefore decrease. In our numerical simulations, emission shifts from regions of low to high plasmaβ—both altering the morphology of the image and decreasing the variability of the light curve—especially in strongly magnetized models with emission close to the midplane. In polarized images, we find that the model gas composition influences the degree to which linear polarization is (de)scrambled and therefore affects estimates for the resolved linear polarization fraction. We also find that the spectra of helium-composition flows peak at higher frequencies and exhibit higher luminosities. We conclude that gas composition may play an important role in predictive models for black hole accretion.
more »
« less
The impact of recombination energy on simulations of the common-envelope binary interaction
ABSTRACT During the common-envelope binary interaction, the expanding layers of the gaseous common envelope recombine and the resulting recombination energy has been suggested as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative study between simulations with and without the inclusion of recombination energy. We use two distinct setups, comprising a 0.88- and 1.8-M⊙ giants, that have been studied before and can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not affected by the choice of equation of state (EoS). In other words, simulations that unbind but a small fraction of the envelope result in similar final separations to those that, thanks to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS results in a much greater fraction of unbound envelope and we demonstrate the cause of this to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy that is allowed to do work should be about half of that which our adiabatic simulations use. (iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen recombination energy that unbinds the gas and we determine that all helium recombination energy is thermalized in the envelope and does work. (v) The outer regions of the expanding common envelope are likely to see the formation of dust. This dust would promote additional unbinding and shaping of the ejected envelope into axisymmetric morphologies.
more »
« less
- Award ID(s):
- 1813298
- PAR ID:
- 10163580
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 494
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- 5333 to 5349
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by recent work finding that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction ≳90% of the secondary at velocities ∼500–1000 km s −1 within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity ≳10 38 erg s −1 , similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ∼300–5000 L ⊙ , effective temperature T eff ≈ 3000 K, and lifetime ∼10 4 –10 5 yr. We predict that ∼10 3 –10 4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.more » « less
-
ABSTRACT Common envelope (CE) evolution, which is crucial in creating short-period binaries and associated astrophysical events, can be constrained by reverse modelling of such binaries’ formation histories. Through analysis of a sample of well-constrained white dwarf (WD) binaries with low-mass primaries (seven eclipsing double WDs, two non-eclipsing double WDs, one WD-brown dwarf), we estimate the CE energy efficiency αCE needed to unbind the hydrogen envelope. We use grids of He- and CO-core WD models to determine the masses and cooling ages that match each primary WD’s radius and temperature. Assuming gravitational wave-driven orbital decay, we then calculate the associated ranges in post-CE orbital period. By mapping WD models to a grid of red giant progenitor stars, we determine the total envelope binding energies and possible orbital periods at the point CE evolution is initiated, thereby constraining αCE. Assuming He-core WDs with progenitors of 0.9–2.0 M⊙, we find αCE ∼ 0.2–0.4 is consistent with each system we model. Significantly higher values of αCE are required for higher mass progenitors and for CO-core WDs, so these scenarios are deemed unlikely. Our values are mostly consistent with previous studies of post-CE WD binaries, and they suggest a nearly constant and low envelope ejection efficiency for CE events that produce He-core WDs.more » « less
-
ABSTRACT The nebular recombination line H α is widely used as a star formation rate (SFR) indicator in the local and high-redshift Universe. We present a detailed H α radiative transfer study of high-resolution isolated Milky-Way and Large Magellanic Cloud simulations that include radiative transfer, non-equilibrium thermochemistry, and dust evolution. We focus on the spatial morphology and temporal variability of the H α emission, and its connection to the underlying gas and star formation properties. The H α and H β radial and vertical surface brightness profiles are in excellent agreement with observations of nearby galaxies. We find that the fraction of H α emission from collisional excitation amounts to fcol ∼ 5–$$10{{\ \rm per\ cent}}$$, only weakly dependent on radius and vertical height, and that scattering boosts the H α luminosity by $$\sim 40{{\ \rm per\ cent}}$$. The dust correction via the Balmer decrement works well (intrinsic H α emission recoverable within 25 per cent), though the dust attenuation law depends on the amount of attenuation itself both on spatially resolved and integrated scales. Important for the understanding of the H α–SFR connection is the dust and helium absorption of ionizing radiation (Lyman continuum [LyC] photons), which are about $$f_{\rm abs}\approx 28{{\ \rm per\ cent}}$$ and $$f_{\rm He}\approx 9{{\ \rm per\ cent}}$$, respectively. Together with an escape fraction of $$f_{\rm esc}\approx 6{{\ \rm per\ cent}}$$, this reduces the available budget for hydrogen line emission by nearly half ($$f_{\rm H}\approx 57{{\ \rm per\ cent}}$$). We discuss the impact of the diffuse ionized gas, showing – among other things – that the extraplanar H α emission is powered by LyC photons escaping the disc. Future applications of this framework to cosmological (zoom-in) simulations will assist in the interpretation of spectroscopy of high-redshift galaxies with the upcoming James Webb Space Telescope.more » « less
-
Abstract The process of unstable mass transfer in a stellar binary can result in either a complete merger of the stars or successful removal of the donor envelope leaving a surviving more compact binary. Luminous red novae (LRNe) are the class of optical transients believed to accompany such merger/common envelope events. Past works typically model LRNe using analytic formulae for supernova light curves that make assumptions (e.g., radiation-dominated ejecta, neglect of hydrogen recombination energy) not justified in stellar mergers due to the lower velocities and specific thermal energy of the ejecta. We present a one-dimensional model of LRN light curves that accounts for these effects. Consistent with observations, we find that LRNe typically possess two light-curve peaks, an early phase powered by initial thermal energy of the hot, fastest ejecta layers and a later peak powered by hydrogen recombination from the bulk of the ejecta. We apply our model to a sample of LRNe to infer their ejecta properties (mass, velocity, and launching radius) and compare them to the progenitor donor star properties from pretransient imaging. We define the maximum luminosity achievable for a given donor star in the limit that the entire envelope is ejected, finding that several LRNe violate this limit. Shock interaction between the ejecta and predynamical mass loss may provide an additional luminosity source to alleviate this tension. Our model can also be applied to the merger of planets with stars or stars with compact objects.more » « less
An official website of the United States government

