skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Incornvia, Jean Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advances in machine intelligence have sparked interest in hardware accelerators to implement these algorithms, yet embedded electronics have stringent power, area budgets, and speed requirements that may limit nonvolatile memory (NVM) integration. In this context, the development of fast nanomagnetic neural networks using minimal training data is attractive. Here, we extend an inference-only proposal using the intrinsic physics of domain-wall MTJ (DW-MTJ) neurons for online learning to implement fully unsupervised pattern recognition operation, using winner-take-all networks that contain either random or plastic synapses (weights). Meanwhile, a read-out layer trains in a supervised fashion. We find our proposed design can approach state-of-the-art success on the task relative to competing memristive neural network proposals, while eliminating much of the area and energy overhead that would typically be required to build the neuronal layers with CMOS devices. 
    more » « less