skip to main content


Title: Semi-supervised learning and inference in domain-wall magnetic tunnel junction (DW-MTJ) neural networks
Advances in machine intelligence have sparked interest in hardware accelerators to implement these algorithms, yet embedded electronics have stringent power, area budgets, and speed requirements that may limit nonvolatile memory (NVM) integration. In this context, the development of fast nanomagnetic neural networks using minimal training data is attractive. Here, we extend an inference-only proposal using the intrinsic physics of domain-wall MTJ (DW-MTJ) neurons for online learning to implement fully unsupervised pattern recognition operation, using winner-take-all networks that contain either random or plastic synapses (weights). Meanwhile, a read-out layer trains in a supervised fashion. We find our proposed design can approach state-of-the-art success on the task relative to competing memristive neural network proposals, while eliminating much of the area and energy overhead that would typically be required to build the neuronal layers with CMOS devices.  more » « less
Award ID(s):
1910800
NSF-PAR ID:
10145308
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
SPIE Spintronics XII
Volume:
11090
Page Range / eLocation ID:
110903I
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Brain-inspired cognitive computing has so far followed two major approaches - one uses multi-layered artificial neural networks (ANNs) to perform pattern-recognition-related tasks, whereas the other uses spiking neural networks (SNNs) to emulate biological neurons in an attempt to be as efficient and fault-tolerant as the brain. While there has been considerable progress in the former area due to a combination of effective training algorithms and acceleration platforms, the latter is still in its infancy due to the lack of both. SNNs have a distinct advantage over their ANN counterparts in that they are capable of operating in an event-driven manner, thus consuming very low power. Several recent efforts have proposed various SNN hardware design alternatives, however, these designs still incur considerable energy overheads.In this context, this paper proposes a comprehensive design spanning across the device, circuit, architecture and algorithm levels to build an ultra low-power architecture for SNN and ANN inference. For this, we use spintronics-based magnetic tunnel junction (MTJ) devices that have been shown to function as both neuro-synaptic crossbars as well as thresholding neurons and can operate at ultra low voltage and current levels. Using this MTJ-based neuron model and synaptic connections, we design a low power chip that has the flexibility to be deployed for inference of SNNs, ANNs as well as a combination of SNN-ANN hybrid networks - a distinct advantage compared to prior works. We demonstrate the competitive performance and energy efficiency of the SNNs as well as hybrid models on a suite of workloads. Our evaluations show that the proposed design, NEBULA, is up to 7.9× more energy efficient than a state-of-the-art design, ISAAC, in the ANN mode. In the SNN mode, our design is about 45× more energy-efficient than a contemporary SNN architecture, INXS. Power comparison between NEBULA ANN and SNN modes indicates that the latter is at least 6.25× more power-efficient for the observed benchmarks. 
    more » « less
  2. Intellectual Property (IP) thefts of trained machine learning (ML) models through side-channel attacks on inference engines are becoming a major threat. Indeed, several recent works have shown reverse engineering of the model internals using such attacks, but the research on building defenses is largely unexplored. There is a critical need to efficiently and securely transform those defenses from cryptography such as masking to ML frameworks. Existing works, however, revealed that a straightforward adaptation of such defenses either provides partial security or leads to high area overheads. To address those limitations, this work proposes a fundamentally new direction to construct neural networks that are inherently more compatible with masking. The key idea is to use modular arithmetic in neural networks and then efficiently realize masking, in either Boolean or arithmetic fashion, depending on the type of neural network layers. We demonstrate our approach on the edge-computing friendly binarized neural networks (BNN) and show how to modify the training and inference of such a network to work with modular arithmetic without sacrificing accuracy. We then design novel masking gadgets using Domain-Oriented Masking (DOM) to efficiently mask the unique operations of ML such as the activation function and the output layer classification, and we prove their security in the glitch-extended probing model. Finally, we implement fully masked neural networks on an FPGA, quantify that they can achieve a similar latency while reducing the FF and LUT costs over the state-of-the-art protected implementations by 34.2% and 42.6%, respectively, and demonstrate their first-order side-channel security with up to 1M traces. 
    more » « less
  3. The spatiotemporal nature of neuronal behavior in spiking neural networks (SNNs) makes SNNs promising for edge applications that require high energy efficiency. To realize SNNs in hardware, spintronic neuron implementations can bring advantages of scalability and energy efficiency. Domain wall (DW)-based magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural networks given their intrinsic integrate-and-fire behavior with tunable stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent firing probability. The measured behavior was used to simulate a SNN that attains accuracy during learning compared to an equivalent, but more complicated, multi-weight DW-MTJ device. The validation accuracy during training was also shown to be comparable to an ideal leaky integrate and fire device. However, during inference, the binary DW-MTJ neuron outperformed the other devices after Gaussian noise was introduced to the Fashion-MNIST classification task. This work shows that DW-MTJ devices can be used to construct noise-resilient networks suitable for neuromorphic computing on the edge. 
    more » « less
  4. Flooding is one of the leading threats of natural disasters to human life and property, especially in densely populated urban areas. Rapid and precise extraction of the flooded areas is key to supporting emergency-response planning and providing damage assessment in both spatial and temporal measurements. Unmanned Aerial Vehicles (UAV) technology has recently been recognized as an efficient photogrammetry data acquisition platform to quickly deliver high-resolution imagery because of its cost-effectiveness, ability to fly at lower altitudes, and ability to enter a hazardous area. Different image classification methods including SVM (Support Vector Machine) have been used for flood extent mapping. In recent years, there has been a significant improvement in remote sensing image classification using Convolutional Neural Networks (CNNs). CNNs have demonstrated excellent performance on various tasks including image classification, feature extraction, and segmentation. CNNs can learn features automatically from large datasets through the organization of multi-layers of neurons and have the ability to implement nonlinear decision functions. This study investigates the potential of CNN approaches to extract flooded areas from UAV imagery. A VGG-based fully convolutional network (FCN-16s) was used in this research. The model was fine-tuned and a k-fold cross-validation was applied to estimate the performance of the model on the new UAV imagery dataset. This approach allowed FCN-16s to be trained on the datasets that contained only one hundred training samples, and resulted in a highly accurate classification. Confusion matrix was calculated to estimate the accuracy of the proposed method. The image segmentation results obtained from FCN-16s were compared from the results obtained from FCN-8s, FCN-32s and SVMs. Experimental results showed that the FCNs could extract flooded areas precisely from UAV images compared to the traditional classifiers such as SVMs. The classification accuracy achieved by FCN-16s, FCN-8s, FCN-32s, and SVM for the water class was 97.52%, 97.8%, 94.20% and 89%, respectively. 
    more » « less
  5. Biological memory structures impart enormous retention capacity while automatically providing vital functions for chronological information management and update resolution of domain and episodic knowledge. A crucial requirement for hardware realization of such cortical operations found in biology is to first design both Short-Term Memory (STM) and Long-Term Memory (LTM). Herein, these memory features are realized via a beyond-CMOS based learning approach derived from the repeated input information and retrieval of the encoded data. We first propose a new binary STM-LTM architecture with composite synapse of Spin Hall Effect-driven Magnetic Tunnel Junction (SHE-MTJ) and capacitive memory bit-cell to mimic the behavior of biological synapses. This STM-LTM platform realizes the memory potentiation through a continual update process using STM-to-LTM transfer, which is applied to Neural Networks based on the established capacitive crossbar. We then propose a hardware-enabled and customized STM-LTM transition algorithm for the platform considering the real hardware parameters. We validate the functionality of the design using SPICE simulations that show the proposed synapse has the potential of reaching ~30.2pJ energy consumption for STM-to-LTM transfer and 65pJ during STM programming. We further analyze the correlation between energy, array size, and STM-to-LTM threshold utilizing the MNIST dataset. 
    more » « less