Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting chemical reaction yields is pivotal for efficient chemical synthesis, an area that focuses on the creation of novel compounds for diverse uses. Yield prediction demands accurate representations of reactions for forecasting practical transformation rates. Yet, the uncertainty issues broadcasting in real-world situations prohibit current models to excel in this task owing to the high sensitivity of yield activities and the uncertainty in yield measurements. Existing models often utilize single-modal feature representations, such as molecular fingerprints, SMILES sequences, or molecular graphs, which is not sufficient to capture the complex interactions and dynamic behavior of molecules in reactions. In this paper, we present an advanced Uncertainty-Aware Multimodal model (UAM) to tackle these challenges. Our approach seamlessly integrates data sources from multiple modalities by encompassing sequence representations, molecular graphs, and expert-defined chemical reaction features for a comprehensive representation of reactions. Additionally, we address both the model and data-based uncertainty, refining the model’s predictive capability. Extensive experiments on three datasets, including two high throughput experiment (HTE) datasets and one chemist-constructed Amide coupling reaction dataset, demonstrate that UAM outperforms the stateof-the-art methods. The code and used datasets are available at https://github.com/jychen229/Multimodal-reaction-yieldprediction.more » « less
-
Molecular Representation Learning (MRL) has proven impactful in numerous biochemical applications such as drug discovery and enzyme design. While Graph Neural Networks (GNNs) are effective at learning molecular representations from a 2D molecular graph or a single 3D structure, existing works often overlook the flexible nature of molecules, which continuously interconvert across conformations via chemical bond rotations and minor vibrational perturbations. To better account for molecular flexibility, some recent works formulate MRL as an ensemble learning problem, focusing on explicitly learning from a set of conformer structures. However, most of these studies have limited datasets, tasks, and models. In this work, we introduce the first MoleculAR Conformer Ensemble Learning (MARCEL) benchmark to thoroughly evaluate the potential of learning on con- former ensembles and suggest promising research directions. MARCEL includes four datasets covering diverse molecule- and reaction-level properties of chemically diverse molecules including organocatalysts and transition-metal catalysts, extending beyond the scope of common GNN benchmarks that are confined to drug-like molecules. In addition, we conduct a comprehensive empirical study, which benchmarks representative 1D, 2D, and 3D MRL models, along with two strategies that explicitly incorporate conformer ensembles into 3D models. Our findings reveal that direct learning from an accessible conformer space can improve performance on a variety of tasks and models.more » « less
An official website of the United States government

Full Text Available