Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Achieving tunable electrical conductivity in organic materials is a key challenge for the development of next-generation semiconductors. This study demonstrates a novel approach using triphenylamine (TPA) bis-urea macrocycles as supramolecular hosts for guest-induced modulation of charge-transfer (CT) properties. By encapsulating guests with varying reduction potentials, including 2,5-dichloro-1,4-benzoquinone (ClBQ), 2,1,3-benzothiadiazole (BTD), and malononitrile (MN), we observed significant changes in the electrical conductivity. Crystals of the 1(ClBQ)0.31 complex exhibited an electrical conductivity of ∼2.08 × 10–5 S cm–1, a 10,000-fold enhancement compared to the pristine host. This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. 1(MN)0.39 and 1(BTD)0.5 demonstrated moderate conductivities explained by the interplay of electronic coupling, reorganization energy, and energy gap. Lower ratios of guest inclusion decreased the electrical conductivity by 10-fold in 1(ClBQ)0.18, while 1(MN)0.25 and 1(BTD)0.41 were nonconductive (10–9 S cm–1). This work highlights the potential of metal-free, porous organic systems as tunable semiconductors, offering a pathway to innovative applications in organic electronics.more » « lessFree, publicly-accessible full text available August 25, 2026
-
Absorption of electronic acceptors in the accessible channels of an assembled triphenylamine (TPA) bis -urea macrocycle 1 enabled the study of electron transfer from the walls of the TPA framework to the encapsulated guests. The TPA host is isoskeletal in all host–guest structures analyzed with guests 2,1,3-benzothiadiazole, 2,5-dichlorobenzoquinone and I 2 loading in single-crystal-to-single-crystal transformations. Analysis of the crystal structures highlights how the spatial proximity and orientation of the TPA host and the entrapped guests influence their resulting photophysical properties and allow direct comparison of the different donor–acceptor complexes. Diffuse reflectance spectroscopy shows that upon complex formation 1·2,5-dichlorobenzoquinone exhibits a charge transfer (CT) transition. Whereas, the 1·2,1,3-benzothiadiazole complex undergoes a photoinduced electron transfer (PET) upon irradiation with 365 nm LEDs. The CT absorptions were also identified with the aid of time dependent density functional theory (TD-DFT) calculations. Cyclic voltammetry experiments show that 2,1,3-benzothiadiazole undergoes reversible reduction within the host–guest complex. Moreover, the optical band gaps of the host 1·2,5-dichlorobenzoquinone (1.66 eV), and host 1·2,1,3-benzothiadiazole (2.15 eV) complexes are significantly smaller as compared to the free host 1 material (3.19 eV). Overall, understanding this supramolecular electron transfer strategy should pave the way towards designing lower band gap inclusion complexes.more » « less
-
Abstract We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.more » « less
An official website of the United States government
