skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Isu, Solomon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Virus filtration is used to ensure the high level of virus clearance required in the manufacture of biopharmaceutical products such as monoclonal antibodies. Flux decline during virus filtration can occur due to the formation of reversible aggregates consisting of self-assembled monomeric monoclonal antibody molecules, particularly at high antibody concentrations. While size exclusion chromatography is generally unable to detect these reversible aggregates, dynamic light scattering may be used to determine their presence. Flux decline during virus filtration may be minimized by pretreating the feed using a membrane adsorber in order to disrupt the reversible aggregates that are present. The formation of reversible aggregates is highly dependent on the monoclonal antibody and the feed conditions. For the pH values investigated here, pretreatment of the feed using a hydrophobic interaction membrane adsorber was the most effective in minimizing flux decline during virus filtration. Ion exchange membranes may also be effective if the monoclonal antibody and membrane are oppositely charged. Consequently, the effectiveness of ion exchange membrane adsorbers is much more dependent on solution pH when compared to hydrophobic interaction membrane adsorbers. Size based prefiltration was found to be ineffective at disrupting these reversible aggregates. These results can help guide the development of more effective virus filtration processes for monoclonal antibody production.

     
    more » « less
    Free, publicly-accessible full text available January 17, 2026
  2. Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant. 
    more » « less