skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Iyer, Kartheik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we test the frequent assumption that Lyα-emitting galaxies (LAEs) are experiencing their first major burst of star formation at the time of observation. To this end, we identify 74 LAEs from the ODIN Survey with rest-UV-through-NIR photometry from UVCANDELS. For each LAE, we perform nonparametric star formation history (SFH) reconstruction using the Dense Basis Gaussian-process-based method of spectral energy distribution fitting. We find that a strong majority (67%) of our LAE SFHs align with the frequently assumed archetype of a first major star formation burst, with at most modest star formation rates (SFRs) in the past. However, the rest of our LAE SFHs have significant amounts of star formation in the past, with 28% exhibiting earlier bursts of star formation, with the ongoing burst having the highest SFR (dominant bursts) and the final 5% having experienced their highest SFR in the past (nondominant bursts). Combining the SFHs indicating first and dominant bursts, ∼95% of LAEs are experiencing their largest burst yet: a formative burst. We also find that the fraction of total stellar mass created in the last 200 Myr is ∼1.3 times higher in LAEs than in mass-matched Lyman break galaxy (LBG) samples, and that a majority of LBGs are experiencing dominant bursts, reaffirming that LAEs differ from other star-forming galaxies. Overall, our results suggest that multiple evolutionary paths can produce galaxies with strong observed Lyαemission. 
    more » « less
    Free, publicly-accessible full text available June 4, 2026
  2. Abstract We present the construction of a deep multiwavelength point-spread-function-matched photometric catalog in the Ultra-Deep Survey (UDS) field following the final UKIDSS UDS release. The catalog includes photometry in 24 filters, from the MegaCam-uS0.38μm band to the Spitzer-IRAC 8μm band, over ∼0.9 deg2and with a 5σdepth of 25.3 AB in theK-band detection image. The catalog, containing ≈188,564 (136,235) galaxies at 0.2 <z< 8.0 with stellar mass log ( M * / M ) > 8 andK-band total magnitudeK< 25.2 (24.3) AB, enables a range of extragalactic studies. We also provide photometric redshifts, corresponding redshift probability distributions, and rest-frame absolute magnitudes and colors derived using the template-fitting codeeazy-py. Photometric redshift errors are less than 3%−4% atz< 4 across the full brightness range in theKband and stellar mass range 8 < log ( M * / M ) < 12 . Stellar population properties (e.g., stellar mass, star formation rate, dust extinction) are derived from the modeling of the spectral energy distributions using the codesFASTand Dense Basis. 
    more » « less
  3. Abstract We present the empirical dust attenuation (EDA) framework—a flexible prescription for assigning realistic dust attenuation to simulated galaxies based on their physical properties. We use the EDA to forward model synthetic observations for three state-of-the-art large-scale cosmological hydrodynamical simulations: SIMBA, IllustrisTNG, and EAGLE. We then compare the optical and UV color–magnitude relations, ( g − r ) − M r and (far-UV −near-UV) − M r , of the simulations to a M r < − 20 and UV complete Sloan Digital Sky Survey galaxy sample using likelihood-free inference. Without dust, none of the simulations match observations, as expected. With the EDA, however, we can reproduce the observed color–magnitude with all three simulations. Furthermore, the attenuation curves predicted by our dust prescription are in good agreement with the observed attenuation–slope relations and attenuation curves of star-forming galaxies. However, the EDA does not predict star-forming galaxies with low A V since simulated star-forming galaxies are intrinsically much brighter than observations. Additionally, the EDA provides, for the first time, predictions on the attenuation curves of quiescent galaxies, which are challenging to measure observationally. Simulated quiescent galaxies require shallower attenuation curves with lower amplitude than star-forming galaxies. The EDA, combined with forward modeling, provides an effective approach for shedding light on dust in galaxies and probing hydrodynamical simulations. This work also illustrates a major limitation in comparing galaxy formation models: by adjusting dust attenuation, simulations that predict significantly different galaxy populations can reproduce the same UV and optical observations. 
    more » « less
  4. Abstract The UltraViolet imaging of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey Fields (UVCANDELS) program provides Hubble Space Telescope (HST)/UVIS F275W imaging for four CANDELS fields. We combine this UV imaging with existing HST/near-IR grism spectroscopy from 3D-HST+AGHAST to directly compare the resolved rest-frame UV and H α emission for a sample of 979 galaxies at 0.7 < z < 1.5, spanning a range in stellar mass of 10 8−11.5 M ⊙ . Using a stacking analysis, we perform a resolved comparison between homogenized maps of rest-UV and H α to compute the average UV-to-H α luminosity ratio (an indicator of burstiness in star formation) as a function of galactocentric radius. We find that galaxies below stellar mass of ∼10 9.5 M ⊙ , at all radii, have a UV-to-H α ratio higher than the equilibrium value expected from constant star formation, indicating a significant contribution from bursty star formation. Even for galaxies with stellar mass ≳10 9.5 M ⊙ , the UV-to-H α ratio is elevated toward their outskirts ( R / R eff > 1.5), suggesting that bursty star formation is likely prevalent in the outskirts of even the most massive galaxies, but is likely overshadowed by their brighter cores. Furthermore, we present the UV-to-H α ratio as a function of galaxy surface brightness, a proxy for stellar mass surface density, and find that regions below ∼10 7.5 M ⊙ kpc −2 are consistent with bursty star formation, regardless of their galaxy stellar mass, potentially suggesting that local star formation is independent of global galaxy properties at the smallest scales. Last, we find galaxies at z > 1.1 to have bursty star formation, regardless of radius or surface brightness. 
    more » « less
  5. Abstract The 3D geometries of high-redshift galaxies remain poorly understood. We build a differentiable Bayesian model and use Hamiltonian Monte Carlo to efficiently and robustly infer the 3D shapes of star-forming galaxies in James Webb Space Telescope Cosmic Evolution Early Release Science observations with log M * / M = 9.0 10.5 atz= 0.5–8.0. We reproduce previous results from the Hubble Space Telescope Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey in a fraction of the computing time and constrain the mean ellipticity, triaxiality, size, and covariances with samples as small as ∼50 galaxies. We find high 3D ellipticities for all mass–redshift bins, suggesting oblate (disky) or prolate (elongated) geometries. We break that degeneracy by constraining the mean triaxiality to be ∼1 for log M * / M = 9.0 9.5 dwarfs atz> 1 (favoring the prolate scenario), with significantly lower triaxialities for higher masses and lower redshifts indicating the emergence of disks. The prolate population traces out a “banana” in the projected b / a log a diagram with an excess of low-b/a, large- log a galaxies. The dwarf prolate fraction rises from ∼25% atz= 0.5–1.0 to ∼50%–80% atz= 3–8. Our results imply a second kind of disk settling from oval (triaxial) to more circular (axisymmetric) shapes with time. We simultaneously constrain the 3D size–mass relation and its dependence on 3D geometry. High-probability prolate and oblate candidates show remarkably similar Sérsic indices (n∼ 1), nonparametric morphological properties, and specific star formation rates. Both tend to be visually classified as disks or irregular, but edge-on oblate candidates show more dust attenuation. We discuss selection effects, follow-up prospects, and theoretical implications. 
    more » « less