Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Virgo Filament Survey (VFS) is a comprehensive study of galaxies that reside in the extended filamentary structures surrounding the Virgo Cluster, out to 12 virial radii. The primary goal is to characterize all of the dominant baryonic components within galaxies and to understand whether and how they are affected by the filament environment. A key constituent of VFS is a narrowband Hαimaging survey of over 600 galaxies, VFS-Hα. The Hαimages reveal detailed, resolved maps of the ionized gas and massive star formation. This imaging is particularly powerful as a probe of environmentally induced quenching because different physical processes affect the spatial distribution of star formation in different ways. In this paper, we present the first results from the VFS-Hαfor the NGC 5364 group, a low-mass ( ) system located at the western edge of the Virgo III filament. We combine Hαimaging with resolved Hiobservations from MeerKAT for eight group members. These galaxies exhibit peculiar morphologies, including strong distortions in the stars and the gas, truncated Hiand Hαdisks, H itails, extraplanar Hαemission, and off-center Hαemission. These signatures are suggestive of environmental processing such as tidal interactions, ram pressure stripping, and starvation. We quantify the role of ram pressure stripping expected in this group, and find that it can explain the cases of Hitails and truncated Hαfor all but one of the disk-dominated galaxies. Our observations indicate that multiple physical mechanisms are disrupting the baryon cycle in these group galaxies.more » « lessFree, publicly-accessible full text available May 15, 2026
-
Abstract Despite the ubiquity of clumpy star-forming galaxies at high-redshift, the origin of clumps are still largely unconstrained due to the limited observations that can validate the mechanisms for clump formation. We postulate that if clumps form due to the accretion of metal-poor gas that leads to violent disk instability, clumpy galaxies should have lower gas-phase metallicities compared to nonclumpy galaxies. In this work, we obtain the near-infrared spectrum for 42 clumpy and nonclumpy star-forming galaxies of similar masses, star formation rates, and colors atz ≈ 0.7 using the Gemini Near-Infrared Spectrograph (GNIRS) and infer their gas-phase metallicity from the [Nii]λ6584 and Hαline ratio. We find that clumpy galaxies have lower metallicities compared to nonclumpy galaxies, with an offset in the weighted average metallicity of 0.07 ± 0.02 dex. We also find an offset of 0.06 ± 0.02 dex between clumpy and nonclumpy galaxies in a comparable sample of 23 star-forming galaxies atz ≈ 1.5 using existing data from the FMOS-COSMOS survey. Similarly, lower [Nii]λ6584/Hαratios are typically found in galaxies that have more of their UVrestluminosity originating from clumps, suggesting that clumpier galaxies are more metal-poor. We also derive the intrinsic velocity dispersion and line-of-sight rotational velocity for galaxies from the GNIRS sample. The majority of galaxies haveσ0/vc ≈ 0.2, with no significant difference between clumpy and nonclumpy galaxies. Our result indicates that clump formation may be related to the inflow of metal-poor gas; however, the process that forms them does not necessarily require significant, long-term kinematic instability in the disk.more » « lessFree, publicly-accessible full text available January 14, 2026
-
Abstract Recent theoretical work and targeted observational studies suggest that filaments are sites of galaxy preprocessing. The aim of the WISESize project is to directly probe galaxies over the full range of environments to quantify and characterize extrinsic galaxy quenching in the local universe. In this paper, we useGALFITto measure the IR 12μm (R12) and 3.4μm (R3.4) effective radii of 603 late-type galaxies in and surrounding the Virgo cluster. We find that Virgo cluster galaxies show smaller star-forming disks relative to their field counterparts at the 2.5σlevel, while filament galaxies show smaller star-forming disks to almost 1.5σ. Our data, therefore, show that cluster galaxies experience significant effects on their star-forming disks prior to their final quenching period. There is also tentative support for the hypothesis that galaxies are preprocessed in filamentary regions surrounding clusters. On the other hand, galaxies belonging to rich groups and poor groups do not differ significantly from those in the field. We additionally find hints of a positive correlation between stellar mass and size ratio for both rich group and filament galaxies, though the uncertainties on these data are consistent with no correlation. We compare our size measurements with the predictions from two variants of a state-of-the-art semi-analytic model (SAM), one which includes starvation and the other incorporating both starvation and ram pressure stripping (RPS). Our data appear to disfavor the SAM, which includes RPS for the rich group, filament, and cluster samples, which contributes to improved constraints for general models of galaxy quenching.more » « less
-
ABSTRACT We investigate the role of dense environments in suppressing star formation by studying $$\rm \log _{10}(M_\star /M_\odot) \gt 9.7$$ star-forming galaxies in nine clusters from the Local Cluster Survey (0.0137 < z < 0.0433) and a large comparison field sample drawn from the Sloan Digital Sky Survey. We compare the star formation rate (SFR) with stellar mass relation as a function of environment and morphology. After carefully controlling for mass, we find that in all environments, the degree of SFR suppression increases with increasing bulge-to-total (B/T) ratio. In addition, the SFRs of cluster and infall galaxies at a fixed mass are more suppressed than their field counterparts at all values of B/T. These results suggest a quenching mechanism that is linked to bulge growth that operates in all environments and an additional mechanism that further reduces the SFRs of galaxies in dense environments. We limit the sample to B/T ≤ 0.3 galaxies to control for the trends with morphology and find that the excess population of cluster galaxies with suppressed SFRs persists. We model the time-scale associated with the decline of SFRs in dense environments and find that the observed SFRs of the cluster core galaxies are consistent with a range of models including a mechanism that acts slowly and continuously over a long (2–5 Gyr) time-scale, and a more rapid (<1 Gyr) quenching event that occurs after a delay period of 1–6 Gyr. Quenching may therefore start immediately after galaxies enter clusters.more » « less
-
ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required.more » « less
-
Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties.more » « less
-
Abstract We use photometric redshifts and statistical background subtraction to measure stellar mass functions in galaxy group-mass (4.5 − 8 × 1013 M⊙) haloes at 1 < z < 1.5. Groups are selected from COSMOS and SXDF, based on X-ray imaging and sparse spectroscopy. Stellar mass (Mstellar) functions are computed for quiescent and star-forming galaxies separately, based on their rest-frame UVJ colours. From these we compute the quiescent fraction and quiescent fraction excess (QFE) relative to the field as a function of Mstellar. QFE increases with Mstellar, similar to more massive clusters at 1 < z < 1.5. This contrasts with the apparent separability of Mstellar and environmental factors on galaxy quiescent fractions at z ∼ 0. We then compare our results with higher mass clusters at 1 < z < 1.5 and lower redshifts. We find a strong QFE dependence on halo mass at fixed Mstellar; well fit by a logarithmic slope of d(QFE)/dlog (Mhalo) ∼ 0.24 ± 0.04 for all Mstellar and redshift bins. This dependence is in remarkably good qualitative agreement with the hydrodynamic simulation BAHAMAS, but contradicts the observed dependence of QFE on Mstellar. We interpret the results using two toy models: one where a time delay until rapid (instantaneous) quenching begins upon accretion to the main progenitor (“no pre-processing”) and one where it starts upon first becoming a satellite (“pre-processing”). Delay times appear to be halo mass dependent, with a significantly stronger dependence required without pre-processing. We conclude that our results support models in which environmental quenching begins in low-mass (<1014M⊙) haloes at z > 1.more » « less
-
ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($$M\approx 2\times 10^{14}\, \mathrm{M}_\odot$$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate.more » « less
-
ABSTRACT Recent observations have shown that the environmental quenching of galaxies at z ∼ 1 is qualitatively different to that in the local Universe. However, the physical origin of these differences has not yet been elucidated. In addition, while low-redshift comparisons between observed environmental trends and the predictions of cosmological hydrodynamical simulations are now routine, there have been relatively few comparisons at higher redshifts to date. Here we confront three state-of-the-art suites of simulations (BAHAMAS+MACSIS, EAGLE+Hydrangea, IllustrisTNG) with state-of-the-art observations of the field and cluster environments from the COSMOS/UltraVISTA and GOGREEN surveys, respectively, at z ∼ 1 to assess the realism of the simulations and gain insight into the evolution of environmental quenching. We show that while the simulations generally reproduce the stellar content and the stellar mass functions of quiescent and star-forming galaxies in the field, all the simulations struggle to capture the observed quenching of satellites in the cluster environment, in that they are overly efficient at quenching low-mass satellites. Furthermore, two of the suites do not sufficiently quench the highest mass galaxies in clusters, perhaps a result of insufficient feedback from AGN. The origin of the discrepancy at low stellar masses ($$M_* \lesssim 10^{10}$$ M⊙), which is present in all the simulations in spite of large differences in resolution, feedback implementations, and hydrodynamical solvers, is unclear. The next generation of simulations, which will push to significantly higher resolution and also include explicit modelling of the cold interstellar medium, may help us to shed light on the low-mass tension.more » « less
An official website of the United States government
