skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jacob, Riko"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Kumar, Amit; Ron-Zewi, Noga (Ed.)
    We generalize the classical nuts and bolts problem to a setting where the input is a collection of n nuts and m bolts, and there is no promise of any matching pairs. It is not allowed to compare a nut directly with a nut or a bolt directly with a bolt, and the goal is to perform the fewest nut-bolt comparisons to discover the partial order between the nuts and bolts. We term this problem bipartite sorting. We show that instances of bipartite sorting of the same size exhibit a wide range of complexity, and propose to perform a fine-grained analysis for this problem. We rule out straightforward notions of instance-optimality as being too stringent, and adopt a neighborhood-based definition. Our definition may be of independent interest as a unifying lens for instance-optimal algorithms for other static problems existing in literature. This includes problems like sorting (Estivill-Castro and Woods, ACM Comput. Surv. 1992), convex hull (Afshani, Barbay and Chan, JACM 2017), adaptive joins (Demaine, López-Ortiz and Munro, SODA 2000), and the recent concept of universal optimality for graphs (Haeupler, Hladík, Rozhoň, Tarjan and Tětek, 2023). As our main result on bipartite sorting, we give a randomized algorithm that is within a factor of O(log³(n+m)) of being instance-optimal w.h.p., with respect to the neighborhood-based definition. As our second contribution, we generalize bipartite sorting to DAG sorting, when the underlying DAG is not necessarily bipartite. As an unexpected consequence of a simple algorithm for DAG sorting, we rule out a potential lower bound on the widely-studied problem of sorting with priced information, posed by (Charikar, Fagin, Guruswami, Kleinberg, Raghavan and Sahai, STOC 2000). In this problem, comparing keys i and j has a known cost c_{ij} ∈ ℝ^+ ∪ {∞}, and the goal is to sort the keys in an instance-optimal way, by keeping the total cost of an algorithm as close as possible to ∑_{i=1}^{n-1} c_{x(i)x(i+1)}. Here x(1) < ⋯ < x(n) is the sorted order. While several special cases of cost functions have received a lot of attention in the community, no progress on the general version with arbitrary costs has been reported so far. One reason for this lack of progress seems to be a widely-cited Ω(n) lower bound on the competitive ratio for finding the maximum. This Ω(n) lower bound by (Gupta and Kumar, FOCS 2000) uses costs in {0,1,n, ∞}, and although not extended to sorting, this barrier seems to have stalled any progress on the general cost case. We rule out such a potential lower bound by showing the existence of an algorithm with a Õ(n^{3/4}) competitive ratio for the {0,1,n,∞} cost version. This generalizes the setting of generalized sorting proposed by (Huang, Kannan and Khanna, FOCS 2011), where the costs are either 1 or infinity, and the cost of the cheapest proof is always n-1. 
    more » « less
  2. Guruswami, Venkatesan (Ed.)
    The problem of sorting with priced information was introduced by [Charikar, Fagin, Guruswami, Kleinberg, Raghavan, Sahai (CFGKRS), STOC 2000]. In this setting, different comparisons have different (potentially infinite) costs. The goal is to find a sorting algorithm with small competitive ratio, defined as the (worst-case) ratio of the algorithm’s cost to the cost of the cheapest proof of the sorted order. The simple case of bichromatic sorting posed by [CFGKRS] remains open: We are given two sets A and B of total size N, and the cost of an A-A comparison or a B-B comparison is higher than an A-B comparison. The goal is to sort A ∪ B. An Ω(log N) lower bound on competitive ratio follows from unit-cost sorting. Note that this is a generalization of the famous nuts and bolts problem, where A-A and B-B comparisons have infinite cost, and elements of A and B are guaranteed to alternate in the final sorted order. In this paper we give a randomized algorithm InversionSort with an almost-optimal w.h.p. competitive ratio of O(log³ N). This is the first algorithm for bichromatic sorting with a o(N) competitive ratio. 
    more » « less
  3. null (Ed.)