Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A common explanation for negative user impacts of content recommender systems is misalignment between the platform’s objective and user welfare. In this work, we show that misalignment in the platform’s objective is not the only potential cause of unintended impacts on users: even when the platform’s objective is fully aligned with user welfare, the platform’s learning algorithm can induce negative downstream impacts on users. The source of these user impacts is that different pieces of content may generate observable user reactions (feedback information) at different rates; these feedback rates may correlate with content properties, such as controversiality or demographic similarity of the creator, that affect the user experience. Since differences in feedback rates can impact how often the learning algorithm engages with different content, the learning algorithm may inadvertently promote content with certain such properties. Using the multi-armed bandit framework with probabilistic feedback, we examine the relationship between feedback rates and a learning algorithm’s engagement with individual arms for different no-regret algorithms. We prove that no-regret algorithms can exhibit a wide range of dependencies: if the feedback rate of an arm increases, some no-regret algorithms engage with the arm more, some no-regret algorithms engage with the arm less, and other no-regret algorithms engage with the arm approximately the same number of times. From a platform design perspective, our results highlight the importance of looking beyond regret when measuring an algorithm’s performance, and assessing the nature of a learning algorithm’s engagement with different types of content as well as their resulting downstream impacts.more » « lessFree, publicly-accessible full text available May 1, 2025
-
As the scale of machine learning models increases, trends such as scaling laws anticipate consistent downstream improvements in predictive accuracy. However, these trends take the perspective of a single model-provider in isolation, while in reality providers often compete with each other for users. In this work, we demonstrate that competition can fundamentally alter the behavior of these scaling trends, even causing overall predictive accuracy across users to be non-monotonic or decreasing with scale. We define a model of competition for classification tasks, and use data representations as a lens for studying the impact of increases in scale. We find many settings where improving data representation quality (as measured by Bayes risk) decreases the overall predictive accuracy across users (i.e., social welfare) for a marketplace of competing model-providers. Our examples range from closed-form formulas in simple settings to simulations with pretrained representations on CIFAR-10. At a conceptual level, our work suggests that favorable scaling trends for individual model-providers need not translate to downstream improvements in social welfare in marketplaces with multiple model providers.more » « less
-
Competition between traditional platforms is known to improve user utility by aligning the platform's actions with user preferences. But to what extent is alignment exhibited in data-driven marketplaces? To study this question from a theoretical perspective, we introduce a duopoly market where platform actions are bandit algorithms and the two platforms compete for user participation. A salient feature of this market is that the quality of recommendations depends on both the bandit algorithm and the amount of data provided by interactions from users. This interdependency between the algorithm performance and the actions of users complicates the structure of market equilibria and their quality in terms of user utility. Our main finding is that competition in this market does not perfectly align market outcomes with user utility. Interestingly, market outcomes exhibit misalignment not only when the platforms have separate data repositories, but also when the platforms have a shared data repository. Nonetheless, the data sharing assumptions impact what mechanism drives misalignment and also affect the specific form of misalignment (e.g. the quality of the best-case and worst-case market outcomes). More broadly, our work illustrates that competition in digital marketplaces has subtle consequences for user utility that merit further investigation.