Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Among various elements of urban infrastructure, there is significant opportunity to improve existing buildings’ sustainability, considering that approximately 40% of the total primary energy consumption and 72% of electricity consumption in United States is consumed by the building sector. Many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods serve the role of supporting this effort, by enabling the identification of the potential savings associated with different potential retrofit strategies. However there are many uncertainties that can impact the accuracy of energy model results, one of which is the weather input data. Measured weather data inputs located at each building can help address this concern, however, weather station data collection for each building is also costly and typically not feasible. Some weather station data is already collected, however, these are generally located at airports rather than near buildings, and thus do not capture local, spatially-varying weather conditions which are documented to occur, particularly in urban areas. In this study we address the impact of spatial temperature differences on residential building energy use. An energy model was developed in EnergyPlus for a residential building located in Mueller neighborhood of Austin, TX, and was validated using actual hourly measured electricity consumption. Using the validated model, the impact of measured spatial temperature differences on building energy consumption were investigated using multiple weather stations located throughout the urban area with different urban fractions. The results indicate that energy consumption of a residential building in a city with a 10% higher urban fraction would increase by approximately 10%. This variation in energy consumption is likely due to the impact of UHI effects occurring in urban areas with high densities.more » « less
-
null (Ed.)In the United States, approximately 40% of the primary energy use and 72% of the electricity use belong to the building sector. This shows the significance of studying the potential for reducing the building energy consumption and buildings’ sustainability for ensuring a sustainable development. Therefore, many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods are among the studies for such an effort, particularly, by enabling the identification of the potential savings associated with different potential retrofit strategies. However, there are many uncertainties that can impact the accuracy of such energy model results, one of which is the weather input data. In this study, to investigate the impact of spatial temperature variation on building energy consumption, six weather stations in an urban area with various urban density were selected. A validated energy model was developed using energy audit data and high-frequency electricity consumption of a residential building in Austin, TX. The energy consumption of the modeled building was compared using the selected six weather datasets. The results show that energy use of a building in an urban area can be impacted by up to 12% due to differences in urban density. This indicates the importance of weather data in predicting energy consumption of the building. The methodology and results of this study can be used by planners and decision makers to reduce uncertainties in estimating the building energy use in urban scale.more » « less
-
null (Ed.)The energy consumption of buildings at the city scale is highly influenced by the weather conditions where the buildings are located. Thus, having appropriate weather data is important for improving the accuracy of prediction of city-level energy consumption and demand. Typically, local weather station data from the nearest airport or military base is used as input into building energy models. However, the weather data at these locations often differs from the local weather conditions experienced by an urban building, particularly considering most ground-based weather stations are located far from many urban areas. The use of the Weather Research and Forecasting Model (WRF) coupled with an Urban Canopy Model (UCM) provides means to predict more localized variations in weather conditions. However, despite advances made in climate modeling, systematic differences in ground-based observations and model results are observed in these simulations. In this study, a comparison between WRF-UCM model results and data from 40 ground-based weather station in Austin, TX is conducted to assess existing systematic differences. Model validations was conducted through an iterative process in which input parameters were adjusted to obtain to best possible fit to the measured data. To account for the remaining systemic error, a statistical approach with spatial and temporal bias correction is implemented. This method improves the quality of the WRF-UCM model results by identifying the statistic properties of the systematic error and applying several bias correction techniques.more » « less
-
Climate studies based on global climate models (GCMs) project a steady increase in annual average temperature and severe heat extremes in central North America during the mid-century and beyond. However, the agreement of observed trends with climate model trends varies substantially across the region. The present study focuses on two different locations: Des Moines, IA and Austin, TX. In Des Moines, annual extreme temperatures have not increased over the past three decades unlike the trend of regionally-downscaled GCM data for the Midwest, likely due to a “warming hole” over the area linked to agricultural factors. This warming hole effect is not evident for Austin over the same time period, where extreme temperatures have been higher than projected by regionally-downscaled climate (RDC) forecasts. In consideration of the deviation of such RDC extreme temperature forecasts from observations, this study statistically analyzes RDC data in conjunction with observational data to define for these two cities a 95% prediction interval of heat extreme values by 2040. The statistical model is constructed using a linear combination of RDC ensemble-member annual extreme temperature forecasts with regression coefficients for individual forecasts estimated by optimizing model results against observations over a 52-year training period.more » « less