Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)In the United States, approximately 40% of the primary energy use and 72% of the electricity use belong to the building sector. This shows the significance of studying the potential for reducing the building energy consumption and buildings’ sustainability for ensuring a sustainable development. Therefore, many different efforts focus on reducing the energy consumption of residential buildings. Data-validated building energy modeling methods are among the studies for such an effort, particularly, by enabling the identification of the potential savings associated with different potential retrofit strategies. However, there are many uncertainties that can impact the accuracy of such energy model results, one of which is the weather input data. In this study, to investigate the impact of spatial temperature variation on building energy consumption, six weather stations in an urban area with various urban density were selected. A validated energy model was developed using energy audit data and high-frequency electricity consumption of a residential building in Austin, TX. The energy consumption of the modeled building was compared using the selected six weather datasets. The results show that energy use of a building in an urban area can be impacted by up to 12% due to differences in urban density. This indicates the importance of weather data in predicting energy consumption of the building. The methodology and results of this study can be used by planners and decision makers to reduce uncertainties in estimating the building energy use in urban scale.more » « less
-
Climate studies based on global climate models (GCMs) project a steady increase in annual average temperature and severe heat extremes in central North America during the mid-century and beyond. However, the agreement of observed trends with climate model trends varies substantially across the region. The present study focuses on two different locations: Des Moines, IA and Austin, TX. In Des Moines, annual extreme temperatures have not increased over the past three decades unlike the trend of regionally-downscaled GCM data for the Midwest, likely due to a “warming hole” over the area linked to agricultural factors. This warming hole effect is not evident for Austin over the same time period, where extreme temperatures have been higher than projected by regionally-downscaled climate (RDC) forecasts. In consideration of the deviation of such RDC extreme temperature forecasts from observations, this study statistically analyzes RDC data in conjunction with observational data to define for these two cities a 95% prediction interval of heat extreme values by 2040. The statistical model is constructed using a linear combination of RDC ensemble-member annual extreme temperature forecasts with regression coefficients for individual forecasts estimated by optimizing model results against observations over a 52-year training period.more » « less