skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jain, Ajay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Optical coherence tomography (OCT) imaging enables high resolution visualization of sub-surface tissue microstructures. However, OCT image analysis using deep learning is hampered by limited diverse training data to meet performance requirements and high inference latency for real-time applications. To address these challenges, we developed Octascope, a lightweight domain-specific convolutional neural network (CNN) - based model designed for OCT image analysis. Octascope was pre-trained using a curriculum learning approach, which involves sequential training, first on natural images (ImageNet), then on OCT images from retinal, abdominal, and renal tissues, to progressively acquire transferable knowledge. This multi-domain pre-training enables Octascope to generalize across varied tissue types. In two downstream tasks, Octascope demonstrated notable improvements in predictive accuracy compared to alternative approaches. In the epidural tissue detection task, our method surpassed single-task learning with fine-tuning by 9.13% and OCT-specific transfer learning by 5.95% in accuracy. Octascope outperformed VGG16 and ResNet50 by 5.36% and 6.66% in a retinal diagnosis task, respectively. In comparison to a Transformer-based OCT foundation model - RETFound, Octascope delivered 2 to 4.4 times faster inference speed with slightly better predictive accuracies in both downstream tasks. Octascope represented a significant advancement for OCT image analysis by providing an effective balance between computational efficiency and diagnostic accuracy for real-time clinical applications. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  2. Recent work learns contextual representations of source code by reconstructing tokens from their context. For downstream semantic understanding tasks like code clone detection, these representations should ideally capture program functionality. However, we show that the popular reconstruction-based RoBERTa model is sensitive to source code edits, even when the edits preserve semantics. We propose ContraCode: a contrastive pre-training task that learns code functionality, not form. ContraCode pre-trains a neural network to identify functionally similar variants of a program among many non-equivalent distractors. We scalably generate these variants using an automated source-to-source compiler as a form of data augmentation. Contrastive pre-training outperforms RoBERTa on an adversarial code clone detection benchmark by 39% AUROC. Surprisingly, improved adversarial robustness translates to better accuracy over natural code; ContraCode improves summarization and TypeScript type inference accuracy by 2 to 13 percentage points over competitive baselines. All source is available at https://github.com/parasj/contracode. 
    more » « less
  3. Due to the theragnostic potential of mesoporous silica nanoparticles (MSNs), these were extensively investigated as a novel approach to improve clinical outcomes. Boasting an impressive array of formulations and modifications, MSNs demonstrate significant in vivo efficacy when used to identify or treat myriad malignant diseases in preclinical models. As MSNs continue transitioning into clinical trials, a thorough understanding of the characteristics of effective MSNs is necessary. This review highlights recent discoveries and advances in MSN understanding and technology. Specific focus is given to cancer theragnostic approaches using MSNs. Characteristics of MSNs such as size, shape, and surface properties are discussed in relation to effective nanomedicine practice and projected clinical efficacy. Additionally, tumor-targeting options used with MSNs are presented with extensive discussion on active-targeting molecules. Methods for decreasing MSN toxicity, improving site-specific delivery, and controlling release of loaded molecules are further explained. Challenges facing the field and translation to clinical environments are presented alongside potential avenues for continuing investigations. 
    more » « less