Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Internet-of-Things (IoT) devices are vulnerable to malware and require new mitigation techniques due to their limited resources. To that end, previous research has used periodic Remote Attestation (RA) or Traffic Analysis (T A) to detect malware in IoT devices. However, RA is expensive, and TA only raises suspicion without confirming malware presence. To solve this, we design MADEA, the first system that blends RA and T A to offer a comprehensive approach to malware detection for the IoT ecosystem. T A builds profiles of expected packet traces during benign operations of each device and then uses them to detect malware from network traffic in realtime. RA confirms the presence or absence of malware on the device. MADEA achieves 100% true positive rate. It also outperforms other approaches with 160× faster detection time. Finally, without MADEA, effective periodic RA can consume at least ∼14× the amount of energy that a device needs in one hour.more » « lessFree, publicly-accessible full text available June 12, 2026
-
Guaranteeing runtime integrity of embedded system software is an open problem. Trade-offs between security and other priorities (e.g., cost or performance) are inherent, and resolving them is both challenging and important. The proliferation of runtime attacks that introduce malicious code (e.g., by injection) into embedded devices has prompted a range of mitigation techniques. One popular approach is Remote Attestation (RA), whereby a trusted entity (verifier) checks the current software state of an untrusted remote device (prover). RA yields a timely authenticated snapshot of prover state that verifier uses to decide whether an attack occurred. Current RA schemes require verifier to explicitly initiate RA, based on some unclear criteria. Thus, in case of prover's compromise, verifier only learns about it late, upon the next RA instance. While sufficient for compromise detection, some applications would benefit from a more proactive, prevention-based approach. To this end, we construct CASU: Compromise Avoidance via Secure Updates. CASU is an inexpensive hardware/software co-design enforcing: (i) runtime software immutability, thus precluding any illegal software modification, and (ii) authenticated updates as the sole means of modifying software. In CASU, a successful RA instance serves as a proof of successful update, and continuous subsequent software integrity is implicit, due to the runtime immutability guarantee. This obviates the need for RA in between software updates and leads to unobtrusive integrity assurance with guarantees akin to those of prior RA techniques, with better overall performance.more » « less
An official website of the United States government

Full Text Available