skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jamieson, Kyle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. NextG cellular networks are designed to meet Quality of Service requirements for various applications in and beyond smartphones and mobile devices. However, lacking introspection into the 5G Radio Access Network (RAN) application and transport layer designers are ill-poised to cope with the vagaries of the wireless last hop to a mobile client, while 5G network operators run mostly closed networks, limiting their potential for co-design with the wider internet and user applications. This paper presents NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can stream fine-grained RAN capacity, latency, and retransmission information to application servers to enable better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. Our experimental evaluation on various 5G Standalone base stations demonstrates NR-Scope can achieve less than 0.1% throughput error estimation for every UE in a RAN. The code is available at https://github.com/PrincetonUniversity/NR-Scope. 
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. 5G New Radio cellular networks are designed to provide high Quality of Service for application on wirelessly connected devices. However, changing conditions of the wireless last hop can degrade application performance, and the applications have no visibility into the 5G Radio Access Network (RAN). Most 5G network operators run closed networks, limiting the potential for co-design with the wider-area internet and user applications. This paper demonstrates NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can passively measure fine-grained RAN capacity, latency, and retransmission information. Application servers can take advantage of the measurements to achieve better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. We demonstrate the performance of NR-Scope by decoding the downlink control information (DCI) for downlink and uplink traffic of a 5G Standalone base station in real-time. 
    more » « less
    Free, publicly-accessible full text available December 4, 2025
  3. We present the design and implementation of WaveFlex, the first smart surface that enhances Private 5G networks operating under the shared-license framework in the Citizens Broadband Radio Service frequency band. WaveFlex works in the presence of frequency diversity: multiple nearby base stations operating on different frequencies, as dictated by a Spectrum Access System coordinator. It also handles time dynamism: due to the dynamic sharing rules of the CBRS band, base stations occasionally switch channels, especially when priority users enter the network. Finally, WaveFlex operates independently of the network itself, not requiring access to nor modification of the gNB or UEs, yet it remains compliant with and effective on prevailing cellular protocols. We have designed and fabricated WaveFlex on a custom multi-layer PCB, software defined radio based network monitor, and supporting control software and hardware. Our experimental evaluation benchmarks operational Private 5G and LTE networks running at full line rate. In a realistic indoor office scenario, 5G experimental results demonstrate an 8.58~dB average SNR gain, and an average throughput gain of 10.77 Mbps under a single gNB, and 12.84 Mbps under three gNBs, corresponding to throughput improvements of 18.4% and 19.5%, respectively. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  4. Rapid delay variations in today’s access networks impair the QoE of low-latency, interactive applications, such as video conferencing. To tackle this problem, we propose Athena, a framework that correlates high-resolution measurements from Layer 1 to Layer 7 to remove the fog from the window through which today’s video-conferencing congestion-control algorithms see the network. This cross-layer view of the network empowers the networking community to revisit and re-evaluate their network designs and application scheduling and rate-adaptation algorithms in light of the complex, heterogeneous networks that are in use today, paving the way for network-aware applications and application-aware networks. 
    more » « less
    Free, publicly-accessible full text available November 18, 2025
  5. Free, publicly-accessible full text available November 1, 2025
  6. This paper presents Monolith, a high bitrate, low-power, metamaterials surface-based Orbital Angular Momentum (OAM) MIMO multiplexing design for rank deficient, free space wireless environments. Leveraging ambient signals as the source of power, Monolith backscatters these ambient signals by modulating them into several orthogonal beams, where each beam carries a unique OAM. We provide insights along the design aspects of a low-power and programmable metamaterials-based surface. Our results show that Monolith achieves an order of magnitude higher channel capacity than traditional spatial MIMO backscattering networks. 
    more » « less
  7. Tomorrow's massive-scale IoT sensor networks are poised to drive uplink traffic demand, especially in areas of dense deployment. To meet this demand, however, network designers leverage tools that often require accurate estimates of Channel State Information (CSI), which incurs a high overhead and thus reduces network throughput. Furthermore, the overhead generally scales with the number of clients, and so is of special concern in such massive IoT sensor networks. While prior work has used transmissions over one frequency band to predict the channel of another frequency band on the same link, this paper takes the next step in the effort to reduce CSI overhead: predict the CSI of a nearby but distinct link. We propose Cross-Link Channel Prediction (CLCP), a technique that leverages multi-view representation learning to predict the channel response of a large number of users, thereby reducing channel estimation overhead further than previously possible. CLCP's design is highly practical, exploiting existing transmissions rather than dedicated channel sounding or extra pilot signals. We have implemented CLCP for two different Wi-Fi versions, namely 802.11n and 802.11ax, the latter being the leading candidate for future IoT networks. We evaluate CLCP in two large-scale indoor scenarios involving both line-of-sight and non-line-of-sight transmissions with up to 144 different 802.11ax users and four different channel bandwidths, from 20 MHz up to 160 MHz. Our results show that CLCP provides a 2× throughput gain over baseline and a 30% throughput gain over existing prediction algorithms. 
    more » « less
  8. Exploiting (near-)optimal MIMO signal processing algorithms in the next generation (NextG) cellular systems holds great promise in achieving significant wireless performance gains in spectral efficiency and device connectivity, to name a few. However, it is extremely difficult to enable optimal processing methods in the systems, since the required computational amount increases exponentially with more users and higher data rates, while available processing time is strictly limited. In this regard, quantum signal processing has been recently identified as a promising potential enabler of the (near-)optimal algorithms in the systems, since quantum computing could dramatically speed up the computation via non-conventional effects based on quantum mechanics. Given existing quantum decoherence and noise on quantum hardware, parallel quantum optimization could accelerate the process even further at the expense of more qubit usage. In this paper, we discuss the parallelization of quantum MIMO processing and investigate a spin-level preprocessing method for relatively finer-grained decomposition that can support more flexible parallel quantum signal processing, compared to the recently reported symbol-level decomposition method. We evaluate the method on the state-of-the-art analog D-Wave Advantage quantum processor. 
    more » « less
  9. We present the Hybrid Polar Decoder (HyPD), a hybrid classical-quantum decoder design for Polar error correction codes, which are becoming widespread in today’s 5G and tomorrow’s 6G networks. HyPD employs CMOS processing for the Polar decoder’s binary tree traversal, and Quantum Annealing (QA) processing for the Quantum Polar Decoder (QPD)-a Maximum-Likelihood QA-based Polar decoder submodule. QPD’s design efficiently transforms a Polar decoder into a quadratic polynomial optimization form, then maps this polynomial on to the physical QA hardware via QPD-MAP, a customized problem mapping scheme tailored to QPD. We have experimentally evaluated HyPD on a state-of-the-art QA device with 5,627 qubits, for 5G-NR Polar codes with block length of 1,024 bits, in Rayleigh fading channels. Our results show that HyPD outperforms Successive Cancellation List decoders of list size eight by half an order of bit error rate magnitude, and achieves a 1,500-bytes frame delivery rate of 99.1%, at 1 dB signal-to-noise ratio. Further studies present QA compute time considerations. We also propose QPD-HW, a novel QA hardware topology tailored for the task of decoding Polar codes. QPD-HW is sparse, flexible to code rate and block length, and may be of potential interest to the designers of tomorrow’s 6G wireless networks. 
    more » « less