NextG cellular networks are designed to meet Quality of Service requirements for various applications in and beyond smartphones and mobile devices. However, lacking introspection into the 5G Radio Access Network (RAN) application and transport layer designers are ill-poised to cope with the vagaries of the wireless last hop to a mobile client, while 5G network operators run mostly closed networks, limiting their potential for co-design with the wider internet and user applications. This paper presents NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can stream fine-grained RAN capacity, latency, and retransmission information to application servers to enable better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. Our experimental evaluation on various 5G Standalone base stations demonstrates NR-Scope can achieve less than 0.1% throughput error estimation for every UE in a RAN. The code is available at https://github.com/PrincetonUniversity/NR-Scope. 
                        more » 
                        « less   
                    
                            
                            PrincetonUniversity/NR-Scope Github Repository
                        
                    
    
            NR-Scope is a 5G wireless network telemetry tool for 5G Standalone network measurement and performance optimization. NR-Scope decodes DCI, SIB and RACH information from a 5G Standalone (New Radio) base station. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10640004
- Publisher / Repository:
- Zenodo
- Date Published:
- Edition / Version:
- v0.0.4
- Format(s):
- Medium: X
- Right(s):
- CC
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            5G New Radio cellular networks are designed to provide high Quality of Service for application on wirelessly connected devices. However, changing conditions of the wireless last hop can degrade application performance, and the applications have no visibility into the 5G Radio Access Network (RAN). Most 5G network operators run closed networks, limiting the potential for co-design with the wider-area internet and user applications. This paper demonstrates NR-Scope, a passive, incrementally-deployable, and independently-deployable Standalone 5G network telemetry system that can passively measure fine-grained RAN capacity, latency, and retransmission information. Application servers can take advantage of the measurements to achieve better millisecond scale, application-level decisions on offered load and bit rate adaptation than end-to-end latency measurements or end-to-end packet losses currently permit. We demonstrate the performance of NR-Scope by decoding the downlink control information (DCI) for downlink and uplink traffic of a 5G Standalone base station in real-time.more » « less
- 
            Henderson, Thomas; Imputato, Pasquale; Liu, Yuchen; Gamess, Eric (Ed.)Physical (PHY) layer abstraction is an effective method to reduce the runtimes compared with link simulations but still accurately characterize the link performance. As a result, PHY layer abstraction for IEEE 802.11 WLAN and 3GPP LTE/5G has been widely configured in the network simulators such as ns-3, which achieve faster system-level simulations quantifying the network performance. Since the first publicly accessible 5G NR Sidelink (SL) link simulator has been recently developed, it provides a possibility of implementing the first PHY layer abstraction on 5G NR SL. This work deploys an efficient PHY layer abstraction method (i.e., EESM-log-SGN) for 5G NR SL based on the offline NR SL link simulation. The obtained layer abstraction which is further stored in ns-3 for use aims at the common 5G NR SL scenario of OFDM unicast single layer mapping in the context of Independent and Identically Distributed (i.i.d.) frequency-selective channels. We provide details about implementation, performance, and validation.more » « less
- 
            In December 2017, the Third Generation Partnership Project (3GPP) released the first set of specifications for 5G New Radio (NR), which is currently the most widely accepted 5G cellular standard. 5G NR is expected to replace LTE and previous generations of cellular technology over the next several years, providing higher throughput, lower latency, and a host of new features. Similar to LTE, the 5G NR physical layer consists of several physical channels and signals, most of which are vital to the operation of the network. Unfortunately, like for any wireless technology, disruption through radio jamming is possible. This paper investigates the extent to which 5G NR is vulnerable to jamming and spoofing, by analyzing the physical downlink and uplink control channels and signals. We identify the weakest links in the 5G NR frame, and propose mitigation strategies that should be taken into account during implementation of 5G NR chipsets and base stations.more » « less
- 
            The Third Generation Partnership Project (3GPP) introduced the fifth generation new radio (5G NR) specifications which offer much higher flexibility than legacy cellular communications standards to better handle the heterogeneous service and performance requirements of the emerging use cases. This flexibility, however, makes the resources management more complex. This paper therefore designs a data driven resource allocation method based on the deep Q-network (DQN). The objective of the proposed model is to maximize the 5G NR cell throughput while providing a fair resource allocation across all users. Numerical results using a 3GPP compliant 5G NR simulator demonstrate that the DQN scheduler better balances the cell throughput and user fairness than existing schedulers.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
