skip to main content

Search for: All records

Creators/Authors contains: "Janowiecki, Steven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present Hubble Space Telescope imaging of 14 gas-rich, low-surface-brightness galaxies in the field at distances of 25–36 Mpc, with mean effective radii andg-band central surface brightnesses of 1.9 kpc and 24.2 mag arcsec−2. Nine meet the standard criteria to be considered ultra-diffuse galaxies (UDGs). An inspection of point-like sources brighter than the turnover magnitude of the globular cluster luminosity function and within twice the half-light radii of each galaxy reveals that, unlike those in denser environments, gas-rich, field UDGs host very few old globular clusters (GCs). Most of the targets (nine) have zero candidate GCs, with the remainder having one or two candidates each. These findings are broadly consistent with expectations for normal dwarf galaxies of similar stellar mass. This rules out gas-rich, field UDGs as potential progenitors of the GC-rich UDGs that are typically found in galaxy clusters. However, some in galaxy groups may be directly accreted from the field. In line with other recent results, this strongly suggests that there must be at least two distinct formation pathways for UDGs, and that this subpopulation is simply an extreme low surface brightness extension of the underlying dwarf galaxy population. The root cause of their diffuse stellar distributionsmore »remains unclear, but the formation mechanism appears to only impact the distribution of stars (and potentially dark matter), without strongly impacting the distribution of neutral gas, the overall stellar mass, or the number of GCs.

    « less
  2. Abstract Phosphorus (P) is a critical element for life on Earth, yet the cosmic production sites of P are relatively uncertain. To understand how P has evolved in the solar neighborhood, we measured abundances for 163 FGK stars over a range of –1.09 < [Fe/H] < 0.47 using observations from the Habitable-zone Planet Finder instrument on the Hobby–Eberly Telescope. Atmospheric parameters were calculated by fitting a combination of astrometry, photometry, and Fe I line equivalent widths. Phosphorus abundances were measured by matching synthetic spectra to a P I feature at 10529.52 Å. Our [P/Fe] ratios show that chemical evolution models generally underpredict P over the observed metallicity range. Additionally, we find that the [P/Fe] differs by ∼0.1 dex between thin disk and thick disk stars that were identified with kinematics. The P abundances were compared with α -elements, iron-peak, odd-Z, and s-process elements, and we found that the evolution of P in the disk most strongly resembles that of the α -elements. We also find that molar P/C and N/C ratios for our sample match the scatter seen from other abundance studies. Finally, we measure a [P/Fe] = 0.09 ± 0.1 ratio in one low- α halo star and probablemore »Gaia–Sausage–Enceladus member, an abundance ratio ∼0.3–0.5 dex lower than the other Milky Way disk and halo stars at similar metallicities. Overall, we find that P is likely most significantly produced by massive stars in core-collapse supernovae, based on the largest P abundance survey to date.« less
    Free, publicly-accessible full text available July 20, 2023
  3. Abstract

    We have gathered near-infraredzyJ-band high-resolution spectra of nearly 300 field red giant stars with known lithium abundances in order to survey their Heiλ10830 absorption strengths. This transition is an indicator of chromospheric activity and/or mass loss in red giants. The majority of stars in our sample reside in the red clump or red horizontal branch based on theirVJ,MVcolor–magnitude diagram, and GaiaTeffand log(g) values. Most of our target stars are Li-poor in the sense of having normally low Li abundances, defined here as logϵ(Li) < 1.25. Over 90% of these Li-poor stars have weakλ10830 features. However, more than half of the 83 Li-rich stars (logϵ(Li) > 1.25) have strongλ10830 absorptions. These largeλ10830 lines signal excess chromospheric activity in Li-rich stars; there is almost no indication of significant mass loss. The Li-rich giants may also have a higher binary fraction than Li-poor stars, based on their astrometric data. It appears likely that both residence on the horizontal branch and present or past binary interaction play roles in the significant Li–He connection established in this survey.

  4. Abstract We present results from deep H i and optical imaging of AGC 229101, an unusual H i source detected at v helio =7116 km s −1 in the Arecibo Legacy Fast ALFA (ALFALFA) blind H i survey. Initially classified as a candidate “dark” source because it lacks a clear optical counterpart in Sloan Digital Sky Survey (SDSS) or Digitized Sky Survey 2 (DSS2) imaging, AGC 229101 has 10 9.31±0.05 M ⊙ of H i , but an H i line width of only 43 ± 9 km s −1 . Low-resolution Westerbork Synthesis Radio Telescope (WSRT) imaging and higher-resolution Very Large Array (VLA) B-array imaging show that the source is significantly elongated, stretching over a projected length of ∼80 kpc. The H i imaging resolves the source into two parts of roughly equal mass. WIYN partially populated One Degree Imager (pODI) optical imaging reveals a faint, blue optical counterpart coincident with the northern portion of the H i . The peak surface brightness of the optical source is only μ g ∼ 26.6 mag arcsec −2 , well below the typical cutoff that defines the isophotal edge of a galaxy, and its estimated stellar mass is only 10 7.32±0.33more »M ⊙ , yielding an overall neutral gas-to-stellar mass ratio of M / M * = 98 − 52 + 111 . We demonstrate the extreme nature of this object by comparing its properties with those of other H i -rich sources in ALFALFA and the literature. We also explore potential scenarios that might explain the existence of AGC 229101, including a tidal encounter with neighboring objects and a merger of two dark H i clouds.« less
  5. Abstract

    We present high-resolution observations of a flaring event in the M8 dwarf vB 10 using the near-infrared Habitable-zone Planet Finder (HPF) spectrograph on the Hobby-Eberly Telescope. The high stability of HPF enables us to accurately subtract a vB 10 quiescent spectrum from the flare spectrum to isolate the flare contributions and study the changes in the relative energy of the Caiiinfrared triplet, several Paschen lines, the Heλ10830 triplet lines, and to select iron and magnesium lines in HPF's bandpass. Our analysis reveals the presence of a red asymmetry in the Heλ10830 triplet, which is similar to signatures of coronal rain in the Sun. Photometry of the flare derived from an acquisition camera before spectroscopic observations and the ability to extract spectra from up-the-ramp observations with the HPF infrared detector enable us to perform time-series analysis of part of the flare and provide coarse constraints on the energy and frequency of such flares. We compare this flare with historical observations of flares around vB 10 and other ultracool M dwarfs and attempt to place limits on flare-induced atmospheric mass loss for hypothetical planets around vB 10.

  6. Abstract

    The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 <z< 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving powerR≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very largemore »areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.

    « less
  7. The escape of radiation from galaxies is a frontier cosmology problem with wide-ranging implications for reionization, galaxy evolution and detection strategies for high-redshift systems. Low- and intermediate-mass galaxies may have played a crucial role in reionization at early times, and by studying their analogues in the local universe, we can test models of radiation escape in galaxies that are more observationally accessible. We present here our cross-sectional analyses of the characteristics of low-redshift galaxies from surveys including KISSR, LARS, and two Green Pea galaxy samples through various computational and visualization techniques. Local systems with measured high (> 0.1) Lyman-alpha escape fractions tend to have high equivalent widths in H-alpha (EWHA) and low Lyman-alpha red-peak velocity. The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high EWHA (please see accompanying poster by Olivieri Villalvazo et al. at this meeting). These might represent a population of local starforming galaxies that are more common than, e.g., Green Pea galaxies, that also have potentially high Lyman-alpha, and likely Lyman-continuum, escape. These galaxies could potentially test theoretical models and advance studies of the "first-light" galaxies anticipated from the James Webb Space Telescope through characterizing the underlying physicalmore »properties that contribute to radiation leakage. This work was supported by the University of San Francisco (USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.« less
  8. We present our analyses of 39 selected star-forming low- to intermediate-mass low-redshift galaxies from the KISSR survey. These galaxies were selected as being representative in the local volume of the kinds of early galaxies that might have hosted the first stars, and span a range of galaxy properties (EWHA, reddening, metallicity, stellar mass). The KISSR systems contain a population, in appearance resembling "purple peas", with potentially steep UV slopes and high equivalent widths in H-alpha. Using archival GALEX data and theoretical models of radiation transport in dusty galaxies with clumpy gas media, we translate measurements of the UV slopes of these low-mass low-z KISSR galaxies to their escape fractions in Ly-alpha (LyA) and Ly-continuum (LyC) radiation, confirming a relationship between a galaxy's steep UV spectral slope and a significant (> 0.1) LyA escape fraction. This relationship is seen in existing data of low- to intermediate-mass galaxies in the local volume (please see accompanying poster by Pilon et al. at this meeting). We also translate measured LyA escape fractions in the literature for 14 LARS galaxies and a few dozen green pea galaxies to their LyC escape fractions using similar modeling. This work was supported by the University of San Franciscomore »(USF) Faculty Development Fund, the USF Student Travel Fund, and by the Undergraduate ALFALFA Team through NSF grant AST-1637339.« less