skip to main content

Title: SAMI-H  i : The H  i view of the Hα Tully–Fisher relation and data release

We present SAMI-H i, a survey of the atomic hydrogen content of 296 galaxies with integral field spectroscopy available from the SAMI Galaxy Survey. The sample spans nearly 4 dex in stellar mass ($M_\star = 10^{7.4}-10^{11.1}~ \rm M_\odot$), redshift z < 0.06, and includes new Arecibo observations of 153 galaxies, for which we release catalogues and H i spectra. We use these data to compare the rotational velocities obtained from optical and radio observations and to show how systematic differences affect the slope and scatter of the stellar-mass and baryonic Tully–Fisher relations. Specifically, we show that $\rm H\alpha$ rotational velocities measured in the inner parts of galaxies (1.3 effective radii in this work) systematically underestimate H i global measurements, with H i/$\rm H\alpha$ velocity ratios that increase at low stellar masses, where rotation curves are typically still rising and $\rm H\alpha$ measurements do not reach their plateau. As a result, the $\rm H\alpha$ stellar mass Tully–Fisher relation is steeper (when M⋆ is the independent variable) and has larger scatter than its H i counterpart. Interestingly, we confirm the presence of a small fraction of low-mass outliers of the $\rm H\alpha$ relation that are not present when H i velocity widths are used and are not explained by ‘aperture effects’. These appear to be highly disturbed systems for which $\rm H\alpha$ widths do not provide a reliable estimate of the rotational velocity. Our analysis reaffirms the importance of taking into account differences in velocity definitions as well as tracers used when interpreting offsets from the Tully–Fisher relation, at both low and high redshifts and when comparing with simulations.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 1098-1114
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    We present new and archival atomic hydrogen (H i) observations of 15 of the most massive spiral galaxies in the local Universe (${M_{\star }}\gt 10^{11} \, {\rm M}_\odot$). From 3D kinematic modeling of the datacubes, we derive extended H i rotation curves, and from these, we estimate masses of the dark matter halos and specific angular momenta of the discs. We confirm that massive spiral galaxies lie at the upper ends of the Tully–Fisher relation (mass vs velocity, M ∝ V4) and Fall relation (specific angular momentum vs mass, j ∝ M0.6), in both stellar and baryonic forms, with no significant deviations from single power laws. We study the connections between baryons and dark matter through the stellar (and baryon)-to-halo ratios of mass fM ≡ M⋆/Mh and specific angular momentum fj, ⋆ ≡ j⋆/jh and fj, bar ≡ jbar/jh. Combining our sample with others from the literature for less massive disc-dominated galaxies, we find that fM rises monotonically with M⋆ and Mh (instead of the inverted-U shaped fM for spheroid-dominated galaxies), while fj, ⋆ and fj, bar are essentially constant near unity over four decades in mass. Our results indicate that disc galaxies constitute a self-similar population of objects closely linked to the self-similarity of their dark halos. This picture is reminiscent of early analytical models of galaxy formation wherein discs grow by relatively smooth and gradual inflow, isolated from disruptive events such as major mergers and strong active galactic nuclei feedback, in contrast to the more chaotic growth of spheroids.

    more » « less
  2. null (Ed.)
    The Arecibo Pisces-Perseus Supercluster Survey (APPSS) aims to observationally measure the dark matter mass density of Pisces-Perseus by detecting the peculiar velocities of galaxies falling onto the supercluster. To do this, APPSS will measure galaxies' distances using the Baryonic Tully Fisher Relation (BTFR), which relates a galaxy's baryonic mass and rotational velocity. Recovering the signature of infall as robustly as possible requires a careful choice of rotational velocity measurement, as the use of various velocity definitions changes the scatter and systematics of the relation. We introduce and compare multiple automated methods for measuring a galaxy's rotational velocity using its unresolved line profile. The velocities discussed include global HI profile width measures commonly reported in large surveys, velocity widths derived from best-fit parametrizations to profiles, and velocity widths derived using more novel methods including the spectral line's curve of growth and neural network-derived velocities which incorporate information about the profile's width and shape. We compare these velocity measures by finding best-fit BTFR relations for two samples of galaxies - the SPARC sample and a selected sample of gas-dominated ALFALFA galaxies (Papastergis et al. 2016). With these best-fit BTFRs, we compare intrinsic scatters and residual correlations with source properties to investigate how velocity choice affects the absolute and systematic uncertainties of BTFR-derived galaxy distances. This research is supported by NSF/AST-1714828 and the Brinson Foundation. 
    more » « less
  3. ABSTRACT We present the second data release for the H i-MaNGA programme of H i follow-up observations for the SDSS-IV MaNGA survey. This release contains measurements for 3669 unique galaxies, combining 2108 Green Bank Telescope observations with an updated crossmatch of the MaNGA sample with the ALFALFA survey. We combine these data with MaNGA spectroscopic measurements to examine relationships between H i-to-stellar mass ratio (${\rm M_{H\, {\small I}}/{M_*}}$) and average ISM/star formation properties probed by optical emission lines. ${\rm M_{H\, {\small I}}/{M_*}}$ is very weakly correlated with the equivalent width of H α, implying a loose connection between the instantaneous star formation rate and the H i reservoir, although the link between ${\rm M_{H\, {\small I}}/{M_*}}$ and star formation strengthens when averaged even over only moderate time-scales (∼30 Myr). Galaxies with elevated H i depletion times have enhanced [O i]/H α and depressed H α surface brightness, consistent with more H i residing in a diffuse and/or shock-heated phase that is less capable of condensing into molecular clouds. Of all optical lines, ${\rm M_{H\, {\small I}}/{M_*}}$ correlates most strongly with oxygen equivalent width, EW(O), which is likely a result of the existing correlation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity. Residuals in the ${\rm M_{H\, {\small I}}/{M_*}}$−EW(O) relation are again correlated with [O i]/H α and H α surface brightness, suggesting they are also driven by variations in the fraction of diffuse and/or shock-heated gas. We recover the strong anticorrelation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity seen in previous studies. We also find a relationship between ${\rm M_{H\, {\small I}}/{M_*}}$ and [O i]6302/H α, suggesting that higher fractions of diffuse and/or shock-heated gas are more prevalent in gas-rich galaxies. 
    more » « less

    We present deep rest-frame UV spectroscopic observations using the Gran Telescopio Canarias of six gravitationally lensed Lyα emitters (LAEs) at 2.36 < z < 2.82 selected from the BELLS GALLERY survey. By taking the magnifications into account, we show that LAEs can be as luminous as LLyα ≃ 30 × 1042 erg s−1 and MUV ≃ −23 (AB) without invoking an AGN component, in contrast with previous findings. We measure Lyα rest-frame equivalent widths, $EW_{0}\,\rm (Ly\alpha)$, ranging from 16 to 50 Å and Lyα escape fractions, $f_{\rm esc}\, \rm (Ly\alpha)$, from 10 per cent to 40 per cent. Large $EW_{0}\, \rm (Ly\alpha)$ and $f_{\rm esc}\, \rm (Ly\alpha)$ are found predominantly in LAEs showing weak low-ionization ISM absorption (EW0 ≲ 1 Å) and narrow Lyα profiles (≲300 km s−1 FWHM) with their peak close (≲80 km s−1) to their systemic redshifts, suggestive of less scatter from low H i column densities that favours the escape of Lyα photons. We infer stellar metallicities of Z/Z⊙ ≃ 0.2 in almost all LAEs by comparing the P-Cygni profiles of the wind lines N v1240 Å and C iv1549 Å with those from stellar synthesis models. We also find a trend between MUV and the velocity offset of ISM absorption lines, such as the most luminous LAEs experience stronger outflows. The most luminous LAEs show star formation rates up to ≃180 M⊙ yr−1, yet they appear relatively blue (βUV ≃ −1.8 to −2.0) showing evidence of little dust attenuation [E(B − V) = 0.10–0.14]. These luminous LAEs may be particular cases of young starburst galaxies that have had no time to form large amounts of dust. If so, they are ideal laboratories to study the early phase of massive star formation, stellar and dust mass growth, and chemical enrichment histories of starburst galaxies at high-z.

    more » « less
  5. Abstract

    The baryonic Tully–Fisher relation (BTFR) has applications in galaxy evolution as a test bed for the galaxy–halo connection and in observational cosmology as a redshift-independent secondary distance indicator. This analysis leverages the 31,000+ galaxy Arecibo Legacy Fast ALFA (AreciboL-band Feed Array) Survey (ALFALFA) sample—which provides redshifts, velocity widths, and Hicontent for a large number of gas-bearing galaxies in the local universe—to fit and test an extensive local universe BTFR. The fiducial relation is fit using a 3000-galaxy subsample of ALFALFA, and is shown to be consistent with the full sample. This BTFR is designed to be as inclusive of ALFALFA and comparable samples as possible. Velocity widths measured via an automated method andMbproxies extracted from survey data can be uniformly and efficiently measured for other samples, giving this analysis broad applicability. We also investigate the role of sample demographics in determining the best-fit relation. We find that the best-fit relations are changed significantly by changes to the sample mass range and to second order by changes to mass sampling, gas fraction, different stellar mass and velocity width measurements. We use a subset of ALFALFA with demographics that reflect the full sample to measure a robust BTFR slope of 3.30 ± 0.06. We apply this relation and estimate source distances, finding general agreement with flow-model distances as well as average distance uncertainties of ∼0.17 dex for the full ALFALFA sample. We demonstrate the utility of these distance estimates by applying them to a sample of sources in the Virgo vicinity, recovering signatures of infall consistent with previous work.

    more » « less