skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jariwala, Deep"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 11, 2026
  2. Free, publicly-accessible full text available March 1, 2026
  3. Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available January 29, 2026
  5. Free, publicly-accessible full text available December 26, 2025
  6. Abstract Two-dimensional (2D) semiconductors are promising candidates for optoelectronic application and quantum information processes due to their inherent out-of-plane 2D confinement. In addition, they offer the possibility of achieving low-dimensional in-plane exciton confinement, similar to zero-dimensional quantum dots, with intriguing optical and electronic properties via strain or composition engineering. However, realizing such laterally confined 2D monolayers and systematically controlling size-dependent optical properties remain significant challenges. Here, we report the observation of lateral confinement of excitons in epitaxially grown in-plane MoSe2quantum dots (~15-60 nm wide) inside a continuous matrix of WSe2monolayer film via a sequential epitaxial growth process. Various optical spectroscopy techniques reveal the size-dependent exciton confinement in the MoSe2monolayer quantum dots with exciton blue shift (12-40 meV) at a low temperature as compared to continuous monolayer MoSe2. Finally, single-photon emission (g2(0) ~ 0.4) was also observed from the smallest dots at 1.6 K. Our study opens the door to compositionally engineered, tunable, in-plane quantum light sources in 2D semiconductors. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies. 
    more » « less