- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
01000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agrawal, Manav (1)
-
Hung, Jui-Tse (1)
-
Jasti, Prahlad (1)
-
Jha, Somesh (1)
-
Mohan, Sibin (1)
-
Nikkhoo, Shahab (1)
-
Sanyal, Debopam (1)
-
Tumanov, Alexey (1)
-
Wang, Tianhao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Model-serving systems have become increasingly popular, especially in real-time web applications. In such systems, users send queries to the server and specify the desired performance metrics (e.g., desired accuracy, latency). The server maintains a set of models (model zoo) in the back-end and serves the queries based on the specified metrics. This paper examines the security, specifically robustness against model extraction attacks, of such systems. Existing black-box attacks assume a single model can be repeatedly selected for serving inference requests. Modern inference serving systems break this assumption. Thus, they cannot be directly applied to extract a victim model, as models are hidden behind a layer of abstraction exposed by the serving system. An attacker can no longer identify which model she is interacting with. To this end, we first propose a query-efficient fingerprinting algorithm to enable the attacker to trigger any desired model consistently. We show that by using our fingerprinting algorithm, model extraction can have fidelity and accuracy scores within 1% of the scores obtained when attacking a single, explicitly specified model, as well as up to 14.6% gain in accuracy and up to 7.7% gain in fidelity compared to the naive attack. Second, we counter the proposed attack with a noise-based defense mechanism that thwarts fingerprinting by adding noise to the specified performance metrics. The proposed defense strategy reduces the attack's accuracy and fidelity by up to 9.8% and 4.8%, respectively (on medium-sized model extraction). Third, we show that the proposed defense induces a fundamental trade-off between the level of protection and system goodput, achieving configurable and significant victim model extraction protection while maintaining acceptable goodput (>80%). We implement the proposed defense in a real system with plans to open source.more » « less