Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2025
-
null (Ed.)Abstract This paper builds upon two key principles behind the Bourgain–Dyatlov quantitative uniqueness theorem for functions with Fourier transform supported in an Ahlfors regular set. We first provide a characterization of when a quantitative uniqueness theorem holds for functions with very quickly decaying Fourier transform, thereby providing an extension of the classical Paneah–Logvinenko–Sereda theorem. Secondly, we derive a transference result which converts a quantitative uniqueness theorem for functions with fast decaying Fourier transform to one for functions with Fourier transform supported on a fractal set. In addition to recovering the result of Bourgain–Dyatlov, we obtain analogous uniqueness results for denser fractals.more » « less