skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Even singular integral operators that are well behaved on a purely unrectifiable set
We prove the existence of a ( d −<#comment/> 2 ) (d-2) -dimensional purely unrectifiable set upon which a family ofevensingular integral operators is bounded.  more » « less
Award ID(s):
2049477
PAR ID:
10554390
Author(s) / Creator(s):
;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let ( R , m ) (R,\mathfrak {m}) be a Noetherian local ring of dimension d ≥<#comment/> 2 d\geq 2 . We prove that if e ( R ^<#comment/> r e d ) > 1 e(\widehat {R}_{red})>1 , then the classical Lech’s inequality can be improved uniformly for all m \mathfrak {m} -primary ideals, that is, there exists ε<#comment/> > 0 \varepsilon >0 such that e ( I ) ≤<#comment/> d ! ( e ( R ) −<#comment/> ε<#comment/> ) ℓ<#comment/> ( R / I ) e(I)\leq d!(e(R)-\varepsilon )\ell (R/I) for all m \mathfrak {m} -primary ideals I ⊆<#comment/> R I\subseteq R . This answers a question raised by Huneke, Ma, Quy, and Smirnov [Adv. Math. 372 (2020), pp. 107296, 33]. We also obtain partial results towards improvements of Lech’s inequality when we fix the number of generators of I I
    more » « less
  2. Let f f be analytic on [ 0 , 1 ] [0,1] with | f ( k ) ( 1 / 2 ) | ⩽<#comment/> A α<#comment/> k k ! |f^{(k)}(1/2)|\leqslant A\alpha ^kk! for some constants A A and α<#comment/> > 2 \alpha >2 and all k ⩾<#comment/> 1 k\geqslant 1 . We show that the median estimate of μ<#comment/> = ∫<#comment/> 0 1 f ( x ) d x \mu =\int _0^1f(x)\,\mathrm {d} x under random linear scrambling with n = 2 m n=2^m points converges at the rate O ( n −<#comment/> c log ⁡<#comment/> ( n ) ) O(n^{-c\log (n)}) for any c > 3 log ⁡<#comment/> ( 2 ) / π<#comment/> 2 ≈<#comment/> 0.21 c> 3\log (2)/\pi ^2\approx 0.21 . We also get a super-polynomial convergence rate for the sample median of 2 k −<#comment/> 1 2k-1 random linearly scrambled estimates, when k / m k/m is bounded away from zero. When f f has a p p ’th derivative that satisfies a λ<#comment/> \lambda -Hölder condition then the median of means has error O ( n −<#comment/> ( p + λ<#comment/> ) + ϵ<#comment/> ) O( n^{-(p+\lambda )+\epsilon }) for any ϵ<#comment/> > 0 \epsilon >0 , if k →<#comment/> ∞<#comment/> k\to \infty as m →<#comment/> ∞<#comment/> m\to \infty . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. 
    more » « less
  3. We study regularity of solutions u u to ∂<#comment/> ¯<#comment/> u = f \overline \partial u=f on a relatively compact C 2 C^2 domain D D in a complex manifold of dimension n n , where f f is a ( 0 , q ) (0,q) form. Assume that there are either ( q + 1 ) (q+1) negative or ( n −<#comment/> q ) (n-q) positive Levi eigenvalues at each point of boundary ∂<#comment/> D \partial D . Under the necessary condition that a locally L 2 L^2 solution exists on the domain, we show the existence of the solutions on the closure of the domain that gain 1 / 2 1/2 derivative when q = 1 q=1 and f f is in the Hölder–Zygmund space Λ<#comment/> r ( D ) \Lambda ^r( D) with r > 1 r>1 . For q > 1 q>1 , the same regularity for the solutions is achieved when ∂<#comment/> D \partial D is either sufficiently smooth or of ( n −<#comment/> q ) (n-q) positive Levi eigenvalues everywhere on ∂<#comment/> D \partial D
    more » « less
  4. We show that if L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 are linear transformations from Z d \mathbb {Z}^d to Z d \mathbb {Z}^d satisfying certain mild conditions, then, for any finite subset A A of Z d \mathbb {Z}^d , | L 1 A + L 2 A | ≥<#comment/> ( | det ( L 1 ) | 1 / d + | det ( L 2 ) | 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |\mathcal {L}_1 A+\mathcal {L}_2 A|\geq \left ( |\det (\mathcal {L}_1)|^{1/d}+|\det (\mathcal {L}_2)|^{1/d} \right )^d|A|- o(|A|). \end{equation*} This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 . As an application, we prove a lower bound for | A + λ<#comment/> ⋅<#comment/> A | |A + \lambda \cdot A| when A A is a finite set of real numbers and λ<#comment/> \lambda is an algebraic number. In particular, when λ<#comment/> \lambda is of the form ( p / q ) 1 / d (p/q)^{1/d} for some p , q , d ∈<#comment/> N p, q, d \in \mathbb {N} , each taken as small as possible for such a representation, we show that | A + λ<#comment/> ⋅<#comment/> A | ≥<#comment/> ( p 1 / d + q 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |A + \lambda \cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|). \end{equation*} This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case λ<#comment/> = 2 \lambda = \sqrt {2}
    more » « less
  5. Building on Mazur’s 1978 work on prime degree isogenies, Kenku determined in 1981 all possible cyclic isogenies of elliptic curves over Q \mathbb {Q} . Although more than 40 years have passed, the determination of cyclic isogenies of elliptic curves over a single other number field has hitherto not been realised. In this paper we develop a procedure to assist in establishing such a determination for a given quadratic field. Executing this procedure on all quadratic fields Q ( d ) \mathbb {Q}(\sqrt {d}) with | d | > 10 4 |d| > 10^4 we obtain, conditional on the Generalised Riemann Hypothesis, the determination of cyclic isogenies of elliptic curves over 19 19 quadratic fields, including Q ( 213 ) \mathbb {Q}(\sqrt {213}) and Q ( −<#comment/> 2289 ) \mathbb {Q}(\sqrt {-2289}) . To make this procedure work, we determine all of the finitely many quadratic points on the modular curves X 0 ( 125 ) X_0(125) and X 0 ( 169 ) X_0(169) , which may be of independent interest. 
    more » « less